Изобретение относится к области молекулярной биологии, генетике и клинической медицины и может быть использовано для количественного определения уровня мРНК генов в здоровых и варикозно-измененных венах.
Для количественного анализа экспрессии генов, а именно - анализа транскриптома, измерения транскрипционной активности гена, определяют количество его продукта, матричной РНК (мРНК), универсальной для большей части генов. Для измерения количества мРНК разработан надежный метод - количественная полимеразная цепная реакция (ПЦР) в реальном времени, который применяют для анализа уровня экспрессии нескольких генов. Гены домашнего хозяйства - это гены, транскрибирующиеся с относительным постоянством (конститутивно) и использующиеся в качестве нормализаторов (стандартов) в ПЦР, поскольку предполагается, что на их экспрессию не влияют условия эксперимента. Выбор таких генов-нормализаторов является особенно критичным при анализе экспрессии генов в исследуемых биологических образцах, например, в тканях и органах в норме и при патологии. Экспрессия любых генов является специфичной для определенных типов клеток, тканей и органов. Патологическое состояние органа (условие эксперимента в нашем случае) может отражаться на уровне мРНК некоторых генов домашнего хозяйства, в связи с чем они не могут быть использованы в качестве стандартов-нормализаторов при количественном определении уровня мРНК генов в сравниваемых биологических образцах. Это, в частности, объясняет, почему большинство исследователей очень тщательно и осторожно подходят к такому выбору. На сегодняшний день описаны несколько вариантов генов-нормализаторов для некоторых типов клеток, органов и тканей [Hellemans et al., 2007]. Было показано, что использование не одного, а нескольких генов-нормализаторов, является более надежным при количественной оценке уровня мРНК генов в сравниваемых биологических образцах, однако в каждом отдельном случае (типе эксперимента) их количество должно быть оптимально, поскольку от этого зависит точность измерений. Однако до настоящего времени не был проведен поиск и выбор оптимальных генов-нормализаторов, конститутивно экспрессирующихся в венах, а именно в норме и при патологии - варикозной болезни, которые могут быть использованы в дальнейших исследованиях по экспрессии генов в таких образцах.
Данное изобретение может быть использовано для количественного анализа экспрессии генов - определения уровня мРНК генов в здоровых и варикозно-измененных венах.
Отличием предлагаемого изобретения является использование двух из трех генов: АСТВ, POLR2A и GAPDH (в любом сочетании) в качестве оптимальных генов-нормализаторов для количественного определения уровня мРНК генов в здоровых и варикозно-измененных венах.
Изобретение заключается в следующем:
Послеоперационный материал (удаленные варикозно-измененные вены и условно здоровые) для выделения РНК немедленно помещают в жидкий азот, а затем хранят при - °С до времени использования. Общую РНК выделяют из гомогенизированных вен с использованием реагента TRIzol (Invitrogen, США) в соответствии с протоколом производителя. Концентрацию общей РНК в каждом образце количественно определяют спектрофотометрически при λ=260 нм. После электрофореза РНК в 1% агарозном геле ее целостность подтверждают визуализацией интактных 18S и 28S рРНК под ультрафиолетом. Для количественной ПЦР в качестве матрицы используют кДНК, которую синтезируют при помощи системы обратной транскриптазы RevertAid Premium (Fermentas, США) в соответствии с инструкциями производителя.
Дизайн праймеров для количественной ПЦР выполняют с использованием программ Annhyb222 и Oligo Analyzer. Список потенциальных генов-нормализаторов выбран в соответствии со стратегиями, определенными Vandesompele et al. [1]. Последовательности праймеров приведены в таблице 1.
Синтезированные образцы кДНК разбавляют в 10 раз водой без нуклеаз. Амплификационные смеси (20 мкл) содержат приблизительно 25 нг кДНК-матрицы, 300 нМ прямого и обратного праймера и SYBR Green PCR Master Mix. Количественную ПЦР в реальном времени проводят с использованием амплификатора CFX-96 (Bio-Rad, USA). Протокол амплификации включает этапы: 3-минутную инкубацию при 95°С; 40 циклов, состоящих из денатурации при 95°С (6 сек), отжига праймеров при 58-62°С (8 сек), элонгации при 72°С (10 сек); съем сигнала при 80°С (5 сек). Каждое измерение проводят в трех повторах и включют: стандартную кривую четырех серийных точек разведения кДНК смешанных образцов, контроль без матрицы и каждую тестовую кДНК. Результаты CFX-96 Manager экспортируют в виде файлов Excel и импортируют в программное обеспечение qBase+ (Bio-Rad, США) для дальнейшего анализа в соответствии с руководством по программному обеспечению и дополнительной литературой [2, 3].
Для анализа geNorm, используемого с целью определения оптимальных генов-нормализаторов, требуется строгий минимум из 2 неизвестных образцов и 3 потенциальных генов-нормализаторов. В ходе нашего изобретения мы использовали 20 парных тестируемых образцов (а именно: здоровая и варикозно-измененная вена от каждого из 10 пациентов, страдающих варикозной болезнью вен, соответственно) и 6 потенциальных генов-нормализаторов. Мы выбрали 6 известных генов домашнего хозяйства в качестве потенциальных генов-нормализаторов для наших экспериментов и произвели валидацию их экспрессии в тестируемых образцах вен: АСТВ, GAPDH, HPRT1, POLR2A, RPL13A, YWHAZ. Для определения лучших генов-нормализаторов был проведен анализ geNorm с использованием программного обеспечения qBase+.
Все необходимые для такого анализа модели и алгоритмы реализованы в программном обеспечении qBase+, предназначенном для управления и автоматизированного анализа данных количественных ПЦР. В своей работе мы использовали лицензионную версию программы.
Одной из уникальных особенностей qBase+ является возможность нормализовать относительные количества с помощью нескольких генов-нормализаторов, что дает более точные и надежные результаты. Кроме того, qBase+ оценивает стабильность применяемых генов-нормализаторов (и, следовательно, надежность нормализации), вычисляя две меры качества: коэффициент вариации нормированных относительных количеств генов-нормализаторов (CV, где V - попарная вариация, определяющая оптимальное количество генов-нормализаторов) и параметр стабильности (М), согласно анализу geNorm [1, 2]. Оба значения являются либо только значимыми, либо могут быть рассчитаны только в том случае, если определяются количества несколько генов-нормализаторов. Чем ниже эти параметры качества для конкретных генов-нормализаторов, тем стабильнее экспрессируются эти гены в тестируемых образцах.
Стоит обратить внимание, что реализация алгоритмов анализа geNorm в qBase+ позволяет ранжировать кандидаты в гены-нормализаторы до одного наиболее стабильного гена, тогда как его предшественник в Excel не может провести различие между двумя наиболее стабильно экспрессирующимися кандидатами в гены-нормализаторы.
В таблице №2 приведены результаты анализа geNorm М, показывающие ранжирование генов-кандидатов согласно их стабильности (выраженной в значениях geNorm М): от лучших генов-нормализаторов вверху (низкое значение М) до нестабильно экспрессирующегося гена внизу таблицы (высокое значение М).
По результатам этого теста программное обеспечение сделало вывод: «Высокая стабильность экспрессии подтверждается для 5 из 6 проверяемых генов (средняя величина geNorm М≤0,5) [2]. Оптимальное количество генов-нормализаторов в этой экспериментальной ситуации равно 2 (geNorm V<0,15 при сравнении коэффициент нормализации на основе 2 или 3 наиболее стабильных генов-нормализаторов) [2]. Коэффициент оптимальной нормализации можно вычислить как среднее геометрическое двух из трех генов: АСТВ, POLR2A и GAPDH (в любом сочетании)».
Таким образом, данная комбинация генов может быть выбрана в качестве нормализаторов для количественного определения уровня мРНК генов в здоровых и варикозно-измененных венах.
ИСТОЧНИКИ ИНФОРМАЦИИ
1 Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).
2 Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).
3 Hellemans J, Vandesompele J. qPCR data analysis - unlocking the secret to successful results. In: Hellemans J, Vandesompele J. PCR Troubleshooting and Optimization: The Essential Guide. Ghent University and Biogazelle, Caister Academic Press, Belgium (2011).
название | год | авторы | номер документа |
---|---|---|---|
НАБОР ХАУСКИПИНГОВ ДЛЯ АНАЛИЗА ЭКСПРЕССИИ ГЕНОВ ПРИ БОЛЕЗНИ ПАРКИНСОНА В ПЕРИФЕРИЧЕСКОЙ КРОВИ ЧЕЛОВЕКА И ЕГО ПРИМЕНЕНИЕ | 2022 |
|
RU2798294C1 |
НАБОР ХАУСКИПИНГОВ ДЛЯ АНАЛИЗА ЭКСПРЕССИИ ГЕНОВ ПРИ БОЛЕЗНИ ПАРКИНСОНА В РАЗЛИЧНЫХ ТКАНЯХ ГОЛОВНОГО МОЗГА И ПЕРИФЕРИЧЕСКОЙ КРОВИ МЫШЕЙ И ЕГО ПРИМЕНЕНИЕ | 2022 |
|
RU2798295C1 |
СПОСОБ ДИАГНОСТИКИ РАКА МОЧЕВОГО ПУЗЫРЯ (ВАРИАНТЫ) И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2469323C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ТРАНСКРИПЦИИ ГЕНА, КОДИРУЮЩЕГО ХЕМОКИН CCL2 (МСР-1) ЧЕЛОВЕКА И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2522801C2 |
СПОСОБ ДИАГНОСТИКИ РАКА МОЧЕВОГО ПУЗЫРЯ С ПОМОЩЬЮ ОНКОМАРКЕРА TFDP1 (ВАРИАНТЫ) И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2463354C1 |
СПОСОБ ОЦЕНКИ ЭФФЕКТИВНОСТИ ТЕРАПИИ РАКА МОЧЕВОГО ПУЗЫРЯ ЧЕЛОВЕКА МЕТОДОМ ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2469098C2 |
СПОСОБ ДИАГНОСТИКИ РАКА МОЧЕВОГО ПУЗЫРЯ С ПОМОЩЬЮ ОНКОМАРКЕРА KIFC1 (ВАРИАНТЫ) И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2470301C2 |
СПОСОБ ОЦЕНКИ ЭФФЕКТИВНОСТИ ТЕРАПИИ РАКА МОЧЕВОГО ПУЗЫРЯ ЧЕЛОВЕКА МЕТОДОМ ИММУНОФЕРМЕНТНОГО АНАЛИЗА | 2011 |
|
RU2468088C1 |
СПОСОБ ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ КЛЕТОК РАКА ЛЕГКОГО К ДОКСОРУБИЦИНУ НА ОСНОВАНИИ УРОВНЕЙ ЭКСПРЕССИИ МАРКЕРНЫХ ГЕНОВ И НАБОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2528247C2 |
СПОСОБ ОЦЕНКИ ЭФФЕКТИВНОСТИ ТЕРАПИИ РАКА МОЧЕВОГО ПУЗЫРЯ С ПОМОЩЬЮ ОНКОМАРКЕРА NUSAP1 | 2011 |
|
RU2468372C1 |
Изобретение относится к биотехнологии. Предложена комбинация генов, конститутивно экспрессирующихся в здоровых и варикозно-измененных венах, которые могут быть использованы в дальнейших исследованиях по экспрессии генов в таких образцах. Был проведен поиск и выбор оптимальных генов-нормализаторов, конститутивно экспрессирующихся в венах, а именно в норме и при патологии - варикозной болезни. Полученная комбинация включает в себя два из трех генов: АСТВ, POLR2A и GAPDH (в любом сочетании), конститутивно экспрессирующихся в венах как в норме, так и при варикозной болезни вен, и может быть использована в качестве генов-нормализаторов для количественного определения уровня мРНК генов в здоровых и варикозно-измененных венах. 2 табл.
Применение двух из трех генов: АСТВ, POLR2A и GAPDH (в любом сочетании), конститутивно экспрессирующихся в венах как в норме, так и при варикозной болезни вен, в качестве генов-нормализаторов для количественного определения уровня мРНК генов в здоровых и варикозно-измененных венах.
Крайнова Н.А., ОЦЕНКА ПОТЕНЦИАЛЬНЫХ РЕФЕРЕНСНЫХ ГЕНОВ ДЛЯ НОРМАЛИЗАЦИИ ДАННЫХ ПЦР-РВ В ЭКСПЕРИМЕНТАХ С КЛЕТКАМИ ЛИНИИ HELA, Биотехнология, 2013, том 29, номер 1, стр | |||
Устройство для усиления микрофонного тока с применением самоиндукции | 1920 |
|
SU42A1 |
Jacques B de Kok,Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes, Laboratory Investigation, 2005, 85, p | |||
Способ приготовления кирпичей для футеровки печей, служащих для получения сернистого натрия из серно-натриевой соли | 1921 |
|
SU154A1 |
Авторы
Даты
2019-03-21—Публикация
2018-01-12—Подача