Изобретение относится к области порошковой металлургии и в частности может быть использовано при изготовлении заготовок деталей из порошкового материала с высокими механическими и эксплуатационными свойствами.
Известен способ получения порошкового материала на основе железа с карбидом кремния (заявка №96103230, МПК С22С 33/02, дата публикации заявки: 27.02.1998), включающий смешивание порошков металлов и карбида кремния, прессование и спекание, отличающийся тем, что после предварительного уплотнения порошковой смеси в пресс-форме давлением 15-35 МПа дальнейшее прессование и спекание осуществляют одновременно, пропуская через смесь переменный ток промышленной частоты плотностью 10-35 А/мм2 при давлении 5-15 МПа в течение 3-25 с.
Известен способ получения упрочняемого оксидами композиционного материала на основе железа (патент РФ №2307183, МПК, С22С 1/05, С22С 33/02, опубл. 27.09.2007), при котором смешивают порошок малоустойчивого при деформации оксида железа и порошок стали, легированной элементами, образующими термоустойчивые нанооксиды. Полученную смесь подвергают механическому легированию при интенсивной холодной деформации сдвигом и обжигают. Способ позволяет осуществить механическое легирование стальной матрицы кислородом при меньшей степени холодной деформации, что приводит к сокращению времени технологического процесса.
Известен Синтез интрметаллида Fe3Al (статья в Вестнике Казанского технологического университета, 2010, №5), при котором для синтеза интрметаллида Fe3Al предложено использовать искровое плазменное спекание дисперсных перекурсоров, содержащих элементные железо и алюминий, полученных электрохимическим методом.
Одним из наиболее перспективных методов получения изделий с повышенными механическими, физико-химическими и эксплуатационными свойствами, является метод создание новых композиционных материалов воздействием плазмы высокочастотного индукционного (ВЧИ) разряда на исходный порошковый материал с обеспечением получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, достижение которого определяется изменением в ходе проведения процесса воздействия, как на температуру обработки, так и на характеристики ионного потока, поступающего из плазмы на поверхность обрабатываемого материала (Абдуллин И.Ш., Желтухин B.C. // Вестник Казанского технолог, ун-та. 2003. №1. С. 172-179), (Абдуллин И.Ш., Желтухин B.C., Кудинов В.В. // Физ. и хим. обработки материалов. 2003. №4 С. 45-51). При воздействии высокочастотной (ВЧ) плазмой пониженного давления в диапазоне давлений Р=1,33-133 Па любое тело, независимо от того, является ли оно проводником, полупроводником или диэлектриком, является дополнительным электродом. В результате чего у его поверхности так же, как и в приэлектродной области ВЧ - емкостного разряда образуется слой положительного заряда (СПЗ) толщиной ~10-3 м. Проходя сквозь слой СПЗ и ускоряясь в его электрическом поле, положительные ионы плазмы получают дополнительную энергию до 100 эВ. При столкновении с поверхностью металла ионы передают приобретенную кинетическую энергию и потенциальную энергию рекомбинации поверхностным атомам и частично внедряются в поверхностный слой. Если плазмообразующий газ содержит атомы азота, кислорода или углерода, то в результате диффузионного насыщения поверхностного слоя металла этими элементами увеличивается механические и физико-химические свойства обрабатываемого металла.
Преимущество интерметаллических соединений на основе порошковых систем Fe-Al - в их высокой стойкости к окислению и сульфидной коррозии, при этом их стоимость ниже многих коррозионностойких сталей.
Экспериментальная часть работы по получению интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, воздействием плазмы ВЧИ разряда пониженного давления, реализовалась в цилиндрической разрядной камере из кварца с внутренним диаметром от 10 до 110 мм с помощью трехкольцевого медного водоохлаждаемого индуктора в рабочую зону, которого вводился стаканчик из углеволокнистой ткани марки Урал 2-22р с порошковым материалом с соотношением химических элементов Fe:Al=70:30. Перед воздействием порошок был дегазирован в вакууме при давлении Р=10 Па. Воздействие проводилось на следующих режимах: рабочее давление плазмообразующего газа Р=1,33÷133 Па, частота электромагнитного поля генератора f=1,76-13,56 МГц, потребляемая мощность N=2-18 кВт.
Технической проблемой, на решение которой направлено предлагаемое изобретение является создание порошковых материалов с повышенными механическими, физико-химическими и эксплуатационными свойствами.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в получении интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, с высокими прочностными характеристиками заготовок изделий полученных из порошкового материала.
Технический результат достигается тем, что в способе получения интерметаллидных материалов на основе порошковых систем Fe-Al, включающий приготовление смеси из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2 часов, с дегазацией в вакууме при давлении Р=10 Па, и с последующем воздействием плазмы ВЧИ разряда пониженного разряда в плазмотроне с использованием в качестве плазмообразующего газа аргон, при рабочем давление плазмообразующего газа Р=1,33÷133 Па, частотой электромагнитного поля генератора f=1,76-13,56 МГц, потребляемая мощность N=2-18 кВт. Новым является то, что воздействие на порошковый материала Fe, Al осуществляется в емкости выполненной из углеволокнистого материала, на который непрерывно воздействуют плазменным потоком с технологическими параметрами приведенными ниже:
Диаметр потока плазмы соответствует выходному диаметру плазмотрона, выполненному из кварцевого стекла.
На фиг. 1 представлена экспериментальная плазменная установка ВЧИ разряда пониженного давления: а) - схема установки, б) - фотография установки:
На фиг. 2 представлена дифрактограмма продуктов синтеза смеси из порошкового материала Fe, Al с соотношением 70:30, где: по оси ординат - интенсивность Ip.o рентгенографических отражений, по оси абсцисс - угловой интервал 2θ сканирования.
Экспериментальная плазменная установка ВЧИ разряда пониженного давления представленная на фиг. 1 включает: вакуумную камеру 1; емкость 2 с порошком (стаканчик из углеволокнистого материала); пластинчато-роторный вакуумный насос 3; двухроторный вакуумный насос 4; ВЧ генератор 5; разрядную камеру 6; баллон 7; глухая трубка 8 для установки углеродного стаканчика с боковым отверстием для подачи газа.
Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al осуществляется следующим образом. Приготавливают смесь из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2-3 часов, с дегазацией в вакуумной камере 1 при давлении Р=10 Па, помещение смеси в емкость 2 из углеволокнистого материала с последующем воздействием плазмы ВЧИ разряда пониженного давления в экспериментальной плазменной установке ВЧИ разряда пониженного давления с использованием в качестве плазмообразующего газа аргон с технологическими параметрами приведенные ниже:
Дифрактограмма исходной смеси Fe:Al=70:30 представляет собой аддитивный профиль двухфазной системы, на которой присутствуют отражения α-Fe и Al кубических модификаций.
Рентгенографический анализ образцов, прошедших обработку, показал, что кроме исходных химических веществ имеют место вновь образованные фазы, а именно: кубическая модификация AlFe и моноклинный алюмоферрит Al13Fe4 кроме рефлексов исходных алюминия и α-Fe уверенно диагностируются интерметаллиды: моноклинный Al13Fe4, AlFe кубической модификации.
Полученные результаты электронной микроскопии указывают, что использование плазмы Высокочастотного индукционного разряда пониженного давления позволяет получать интерметаллиды на основе порошкового материала, содержащего элементные α-Fe и Al в заданном соотношении, что позволяет получать заготовки изделий с высокими механическими, физико-химическими и эксплуатационными свойствами.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al | 2019 |
|
RU2708731C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА | 2010 |
|
RU2424873C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ | 2011 |
|
RU2460816C1 |
Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления | 2017 |
|
RU2649695C1 |
СПОСОБ ПОЛУЧЕНИЯ ФРАКЦИОНИРОВАННЫХ УЛЬТРАДИСПЕРСНЫХ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ | 2013 |
|
RU2534089C1 |
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО УЛЬТРАДИСПЕРСНОГО ПОРОШКА | 2012 |
|
RU2492027C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕОТРАЖАЮЩЕГО НЕЙТРАЛЬНОГО ОПТИЧЕСКОГО ФИЛЬТРА | 2000 |
|
RU2186414C1 |
СПОСОБ УМЕНЬШЕНИЯ ПОЛЗУЧЕСТИ И УВЕЛИЧЕНИЯ МОДУЛЯ УПРУГОСТИ СВЕРХВЫСОКОМОЛЕКУЛЯРНЫХ ВЫСОКОПРОЧНЫХ ВЫСОКОМОДУЛЬНЫХ ПОЛИЭТИЛЕНОВЫХ ВОЛОКОН | 2011 |
|
RU2467101C1 |
ВЫСОКОЧАСТОТНЫЙ ПЛАЗМОТРОН | 2010 |
|
RU2477026C2 |
СПОСОБ СКЛЕИВАНИЯ МАТЕРИАЛОВ | 2005 |
|
RU2292826C1 |
Изобретение относится к порошковой металлургии. Порошки Fe, Аl при соотношении 70:30 смешивают в шаровой мельнице 2-3 ч и дегазируют в вакуумной камере 1 при давлении 10 Па. Полученную смесь помещают в ёмкость 2, выполненную из углеволокнистого материала, и воздействуют плазмой ВЧИ-разряда пониженного давления. В качестве плазмообразующего газа используют аргон с расходом 0,004÷0,005 г/с при его рабочем давлении 1,33÷133 Па. Частота электромагнитного поля генератора 5 составляет 1,76-13,56 МГц, потребляемая мощность 2-18 кВт, сила тока анода 0,8÷1,2 А, напряжение 7,8 кВ. Давление в разрядной камере 6 20÷30 Па. Заготовки изделий из полученного интерметаллидного материала обладают высокими прочностными характеристиками. 1 з.п. ф-лы, 2 ил.
1. Способ получения интерметаллидных материалов на основе порошковых систем Fe-Al, включающий приготовление смеси из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2-3 часов, с дегазацией в вакууме при давлении Р=10 Па и с последующим воздействием плазмы ВЧИ-разряда пониженного давления в плазмотроне с использованием в качестве плазмообразующего газа аргона, при рабочем давлении плазмообразующего газа Р=1,33÷133 Па, частоте электромагнитного поля генератора f=1,76-13,56 МГц, потребляемой мощности N=2-18 кВт, отличающийся тем, что воздействие на порошковый материал Fe, Al осуществляют в емкости, выполненной из углеволокнистого материала, на который непрерывно воздействуют плазменным потоком с технологическими параметрами, приведенными ниже:
2. Способ по п. 1, отличающийся тем, что диаметр потока плазмы соответствует выходному диаметру плазмотрона, выполненному из кварцевого стекла.
ДРЕСВЯННИКОВ А.Ф., КОЛПАКОВ М.Е | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Вестник Казанского технологического университета, 2010, no | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА С КАРБИДОМ КРЕМНИЯ | 1996 |
|
RU2090645C1 |
СЕПАРАТОР | 2002 |
|
RU2207183C1 |
US 4772452 A, 20.09.1988 | |||
US 6030472 A, 29.02.2000 | |||
БОЛЬШОЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ ПОЛИТЕХНИЧЕСКИЙ Под | |||
ред | |||
Ишлинского А.Ю., Москва, Научное издательство "Большая Российская энциклопедия", 2000, с | |||
Стеклографический печатный станок с ножной педалью | 1922 |
|
SU236A1 |
АБДУЛЛИН И.Ш., ЖЕЛТУХИН В.С | |||
Применение ВЧ-плазмы пониженного давления для газонасыщения поверхности металлов | |||
Вестник Казанского технологического университета, 2003, no | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Приспособление для воспроизведения изображения на светочувствительной фильме при посредстве промежуточного клише в способе фотоэлектрической передачи изображений на расстояние | 1920 |
|
SU172A1 |
ДРЕСВЯННИКОВ А.Ф | |||
и др | |||
Синтез интерметаллидов плазменным спеканием прекурсора из элементных металлов Fe, Cr, Al | |||
Вестник Казанского технологического университета, 2011, no | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Прибор с двумя призмами | 1917 |
|
SU27A1 |
RODRIGO B | |||
S | |||
et al., Iron aluminide alloy development using plasma transferred arc coating process, 17th Intern | |||
Congress of Mechan | |||
Eng., November 10-14, 2003, So Paulo, SP. |
Авторы
Даты
2019-04-24—Публикация
2018-01-09—Подача