Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-A1 Российский патент 2019 года по МПК B22F1/00 C01G49/00 C01F7/00 C22C33/02 

Описание патента на изобретение RU2686194C1

Изобретение относится к области порошковой металлургии и в частности может быть использовано при изготовлении заготовок деталей из порошкового материала с высокими механическими и эксплуатационными свойствами.

Известен способ получения порошкового материала на основе железа с карбидом кремния (заявка №96103230, МПК С22С 33/02, дата публикации заявки: 27.02.1998), включающий смешивание порошков металлов и карбида кремния, прессование и спекание, отличающийся тем, что после предварительного уплотнения порошковой смеси в пресс-форме давлением 15-35 МПа дальнейшее прессование и спекание осуществляют одновременно, пропуская через смесь переменный ток промышленной частоты плотностью 10-35 А/мм2 при давлении 5-15 МПа в течение 3-25 с.

Известен способ получения упрочняемого оксидами композиционного материала на основе железа (патент РФ №2307183, МПК, С22С 1/05, С22С 33/02, опубл. 27.09.2007), при котором смешивают порошок малоустойчивого при деформации оксида железа и порошок стали, легированной элементами, образующими термоустойчивые нанооксиды. Полученную смесь подвергают механическому легированию при интенсивной холодной деформации сдвигом и обжигают. Способ позволяет осуществить механическое легирование стальной матрицы кислородом при меньшей степени холодной деформации, что приводит к сокращению времени технологического процесса.

Известен Синтез интрметаллида Fe3Al (статья в Вестнике Казанского технологического университета, 2010, №5), при котором для синтеза интрметаллида Fe3Al предложено использовать искровое плазменное спекание дисперсных перекурсоров, содержащих элементные железо и алюминий, полученных электрохимическим методом.

Одним из наиболее перспективных методов получения изделий с повышенными механическими, физико-химическими и эксплуатационными свойствами, является метод создание новых композиционных материалов воздействием плазмы высокочастотного индукционного (ВЧИ) разряда на исходный порошковый материал с обеспечением получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, достижение которого определяется изменением в ходе проведения процесса воздействия, как на температуру обработки, так и на характеристики ионного потока, поступающего из плазмы на поверхность обрабатываемого материала (Абдуллин И.Ш., Желтухин B.C. // Вестник Казанского технолог, ун-та. 2003. №1. С. 172-179), (Абдуллин И.Ш., Желтухин B.C., Кудинов В.В. // Физ. и хим. обработки материалов. 2003. №4 С. 45-51). При воздействии высокочастотной (ВЧ) плазмой пониженного давления в диапазоне давлений Р=1,33-133 Па любое тело, независимо от того, является ли оно проводником, полупроводником или диэлектриком, является дополнительным электродом. В результате чего у его поверхности так же, как и в приэлектродной области ВЧ - емкостного разряда образуется слой положительного заряда (СПЗ) толщиной ~10-3 м. Проходя сквозь слой СПЗ и ускоряясь в его электрическом поле, положительные ионы плазмы получают дополнительную энергию до 100 эВ. При столкновении с поверхностью металла ионы передают приобретенную кинетическую энергию и потенциальную энергию рекомбинации поверхностным атомам и частично внедряются в поверхностный слой. Если плазмообразующий газ содержит атомы азота, кислорода или углерода, то в результате диффузионного насыщения поверхностного слоя металла этими элементами увеличивается механические и физико-химические свойства обрабатываемого металла.

Преимущество интерметаллических соединений на основе порошковых систем Fe-Al - в их высокой стойкости к окислению и сульфидной коррозии, при этом их стоимость ниже многих коррозионностойких сталей.

Экспериментальная часть работы по получению интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, воздействием плазмы ВЧИ разряда пониженного давления, реализовалась в цилиндрической разрядной камере из кварца с внутренним диаметром от 10 до 110 мм с помощью трехкольцевого медного водоохлаждаемого индуктора в рабочую зону, которого вводился стаканчик из углеволокнистой ткани марки Урал 2-22р с порошковым материалом с соотношением химических элементов Fe:Al=70:30. Перед воздействием порошок был дегазирован в вакууме при давлении Р=10 Па. Воздействие проводилось на следующих режимах: рабочее давление плазмообразующего газа Р=1,33÷133 Па, частота электромагнитного поля генератора f=1,76-13,56 МГц, потребляемая мощность N=2-18 кВт.

Технической проблемой, на решение которой направлено предлагаемое изобретение является создание порошковых материалов с повышенными механическими, физико-химическими и эксплуатационными свойствами.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в получении интерметаллидных композиционных материалов на основе порошковых систем Fe-Al, с высокими прочностными характеристиками заготовок изделий полученных из порошкового материала.

Технический результат достигается тем, что в способе получения интерметаллидных материалов на основе порошковых систем Fe-Al, включающий приготовление смеси из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2 часов, с дегазацией в вакууме при давлении Р=10 Па, и с последующем воздействием плазмы ВЧИ разряда пониженного разряда в плазмотроне с использованием в качестве плазмообразующего газа аргон, при рабочем давление плазмообразующего газа Р=1,33÷133 Па, частотой электромагнитного поля генератора f=1,76-13,56 МГц, потребляемая мощность N=2-18 кВт. Новым является то, что воздействие на порошковый материала Fe, Al осуществляется в емкости выполненной из углеволокнистого материала, на который непрерывно воздействуют плазменным потоком с технологическими параметрами приведенными ниже:

Давление Ркам., (Па) 20÷30 Подача плазмообразующего газа G, (г/с) 0,004÷0,005 Сила тока анода Ia, (А) 0,8÷1,2 Напряжение Ua, (кВ) 7,8 Время обработки Тоб, (с) 5÷10

Диаметр потока плазмы соответствует выходному диаметру плазмотрона, выполненному из кварцевого стекла.

На фиг. 1 представлена экспериментальная плазменная установка ВЧИ разряда пониженного давления: а) - схема установки, б) - фотография установки:

На фиг. 2 представлена дифрактограмма продуктов синтеза смеси из порошкового материала Fe, Al с соотношением 70:30, где: по оси ординат - интенсивность Ip.o рентгенографических отражений, по оси абсцисс - угловой интервал 2θ сканирования.

Экспериментальная плазменная установка ВЧИ разряда пониженного давления представленная на фиг. 1 включает: вакуумную камеру 1; емкость 2 с порошком (стаканчик из углеволокнистого материала); пластинчато-роторный вакуумный насос 3; двухроторный вакуумный насос 4; ВЧ генератор 5; разрядную камеру 6; баллон 7; глухая трубка 8 для установки углеродного стаканчика с боковым отверстием для подачи газа.

Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al осуществляется следующим образом. Приготавливают смесь из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2-3 часов, с дегазацией в вакуумной камере 1 при давлении Р=10 Па, помещение смеси в емкость 2 из углеволокнистого материала с последующем воздействием плазмы ВЧИ разряда пониженного давления в экспериментальной плазменной установке ВЧИ разряда пониженного давления с использованием в качестве плазмообразующего газа аргон с технологическими параметрами приведенные ниже:

Давление Ркам., (Па) 20÷30 Подача плазмообразующего газа G, (г/с) 0,004÷0,005 Сила тока анода Ia, (А) 0,8÷1,2 Напряжение Ua, (кВ) 7,8 Время обработки Тоб, (с) 5÷10

Дифрактограмма исходной смеси Fe:Al=70:30 представляет собой аддитивный профиль двухфазной системы, на которой присутствуют отражения α-Fe и Al кубических модификаций.

Рентгенографический анализ образцов, прошедших обработку, показал, что кроме исходных химических веществ имеют место вновь образованные фазы, а именно: кубическая модификация AlFe и моноклинный алюмоферрит Al13Fe4 кроме рефлексов исходных алюминия и α-Fe уверенно диагностируются интерметаллиды: моноклинный Al13Fe4, AlFe кубической модификации.

Полученные результаты электронной микроскопии указывают, что использование плазмы Высокочастотного индукционного разряда пониженного давления позволяет получать интерметаллиды на основе порошкового материала, содержащего элементные α-Fe и Al в заданном соотношении, что позволяет получать заготовки изделий с высокими механическими, физико-химическими и эксплуатационными свойствами.

Похожие патенты RU2686194C1

название год авторы номер документа
Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-Al 2019
  • Сурков Вячеслав Анатольевич
  • Абдуллин Ильдар Шаукатович
  • Шарафеев Рустем Фаридович
  • Ахатов Марат Фарихович
RU2708731C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА 2010
  • Сурков Вячеслав Анатольевич
  • Абдуллин Ильдар Шаукатович
RU2424873C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ МЕДИ 2011
  • Сурков Вячеслав Анатольевич
  • Абдуллин Ильдар Шаукатович
  • Дресвянников Александр Фёдорович
  • Шарафеев Рустем Фаридович
RU2460816C1
Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления 2017
  • Азарова Валентина Васильевна
  • Галеев Вадим Альбертович
  • Гафаров Илдар Гарифович
  • Голяев Юрий Дмитриевич
  • Голяева Анастасия Юрьевна
  • Товстопят Александр Владимирович
  • Фокин Виталий Владимирович
RU2649695C1
СПОСОБ ПОЛУЧЕНИЯ ФРАКЦИОНИРОВАННЫХ УЛЬТРАДИСПЕРСНЫХ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 2013
  • Новиков Александр Николаевич
RU2534089C1
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО УЛЬТРАДИСПЕРСНОГО ПОРОШКА 2012
  • Абдуллин Ильдар Шаукатович
  • Андреев Павел Анатольевич
  • Гафаров Илдар Гарифович
  • Усенко Виталий Александрович
RU2492027C1
СПОСОБ ПОЛУЧЕНИЯ НЕОТРАЖАЮЩЕГО НЕЙТРАЛЬНОГО ОПТИЧЕСКОГО ФИЛЬТРА 2000
  • Абдуллин И.Ш.
  • Галяутдинов Р.Т.
  • Кашапов Н.Ф.
RU2186414C1
СПОСОБ УМЕНЬШЕНИЯ ПОЛЗУЧЕСТИ И УВЕЛИЧЕНИЯ МОДУЛЯ УПРУГОСТИ СВЕРХВЫСОКОМОЛЕКУЛЯРНЫХ ВЫСОКОПРОЧНЫХ ВЫСОКОМОДУЛЬНЫХ ПОЛИЭТИЛЕНОВЫХ ВОЛОКОН 2011
  • Кудинов Владимир Владимирович
  • Абдуллин Ильдар Шаукатович
  • Крылов Игорь Константинович
  • Корнеева Наталья Витальевна
  • Сергеева Екатерина Александровна
RU2467101C1
ВЫСОКОЧАСТОТНЫЙ ПЛАЗМОТРОН 2010
  • Абдуллин Ильдар Шаукатович
  • Миронов Михаил Михайлович
  • Гребенщикова Марина Михайловна
  • Усенко Виталий Александрович
RU2477026C2
СПОСОБ СКЛЕИВАНИЯ МАТЕРИАЛОВ 2005
  • Абдуллин Ильдар Шаукатович
  • Хамматова Венера Василовна
  • Кумпан Елена Васильевна
RU2292826C1

Иллюстрации к изобретению RU 2 686 194 C1

Реферат патента 2019 года Способ получения интерметаллидных композиционных материалов на основе порошковых систем Fe-A1

Изобретение относится к порошковой металлургии. Порошки Fe, Аl при соотношении 70:30 смешивают в шаровой мельнице 2-3 ч и дегазируют в вакуумной камере 1 при давлении 10 Па. Полученную смесь помещают в ёмкость 2, выполненную из углеволокнистого материала, и воздействуют плазмой ВЧИ-разряда пониженного давления. В качестве плазмообразующего газа используют аргон с расходом 0,004÷0,005 г/с при его рабочем давлении 1,33÷133 Па. Частота электромагнитного поля генератора 5 составляет 1,76-13,56 МГц, потребляемая мощность 2-18 кВт, сила тока анода 0,8÷1,2 А, напряжение 7,8 кВ. Давление в разрядной камере 6 20÷30 Па. Заготовки изделий из полученного интерметаллидного материала обладают высокими прочностными характеристиками. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 686 194 C1

1. Способ получения интерметаллидных материалов на основе порошковых систем Fe-Al, включающий приготовление смеси из порошкового материала Fe, Al с соотношением 70:30 в шаровой мельнице в течение 2-3 часов, с дегазацией в вакууме при давлении Р=10 Па и с последующим воздействием плазмы ВЧИ-разряда пониженного давления в плазмотроне с использованием в качестве плазмообразующего газа аргона, при рабочем давлении плазмообразующего газа Р=1,33÷133 Па, частоте электромагнитного поля генератора f=1,76-13,56 МГц, потребляемой мощности N=2-18 кВт, отличающийся тем, что воздействие на порошковый материал Fe, Al осуществляют в емкости, выполненной из углеволокнистого материала, на который непрерывно воздействуют плазменным потоком с технологическими параметрами, приведенными ниже:

Давление Ркам (Па) 20÷30 Подача плазмообразующего газа G (г/с) 0,004÷0,005 Сила тока анода Ia (А) 0,8÷1,2 Напряжение Ua (кВ) 7,8 Время обработки Тоб (с) 5÷10

2. Способ по п. 1, отличающийся тем, что диаметр потока плазмы соответствует выходному диаметру плазмотрона, выполненному из кварцевого стекла.

Документы, цитированные в отчете о поиске Патент 2019 года RU2686194C1

ДРЕСВЯННИКОВ А.Ф., КОЛПАКОВ М.Е
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Вестник Казанского технологического университета, 2010, no
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА С КАРБИДОМ КРЕМНИЯ 1996
  • Кусков В.Н.
  • Макаров А.И.
RU2090645C1
СЕПАРАТОР 2002
  • Ковальский В.А.
RU2207183C1
US 4772452 A, 20.09.1988
US 6030472 A, 29.02.2000
БОЛЬШОЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ ПОЛИТЕХНИЧЕСКИЙ Под
ред
Ишлинского А.Ю., Москва, Научное издательство "Большая Российская энциклопедия", 2000, с
Стеклографический печатный станок с ножной педалью 1922
  • Левенц М.А.
SU236A1
АБДУЛЛИН И.Ш., ЖЕЛТУХИН В.С
Применение ВЧ-плазмы пониженного давления для газонасыщения поверхности металлов
Вестник Казанского технологического университета, 2003, no
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Приспособление для воспроизведения изображения на светочувствительной фильме при посредстве промежуточного клише в способе фотоэлектрической передачи изображений на расстояние 1920
  • Адамиан И.А.
SU172A1
ДРЕСВЯННИКОВ А.Ф
и др
Синтез интерметаллидов плазменным спеканием прекурсора из элементных металлов Fe, Cr, Al
Вестник Казанского технологического университета, 2011, no
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1
RODRIGO B
S
et al., Iron aluminide alloy development using plasma transferred arc coating process, 17th Intern
Congress of Mechan
Eng., November 10-14, 2003, So Paulo, SP.

RU 2 686 194 C1

Авторы

Сурков Вячеслав Анатольевич

Абдуллин Ильдар Шаукатович

Ахатов Марат Фарихович

Шарафеев Рустем Фаридович

Сагбиев Ильгизар Раффакович

Даты

2019-04-24Публикация

2018-01-09Подача