ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНАТА И/ИЛИ ГАФНАТА ДИСПРОЗИЯ Российский патент 2019 года по МПК G21C7/24 B22F9/00 

Описание патента на изобретение RU2686479C1

Изобретение относится к плазмохимическому способу получения высокодисперсных порошков титаната и/или гафната диспрозия, используемых в стержнях регулирования ядерных реакторов для поглощения нейтронов.

Известно использование для производства порошков функционального назначения (например, пигментного диоксида титана, ультрадисперсного нитрида титана, нитрида кремния и т.п.) плазмохимических реакторов. Эффективность использования плазмохимического процесса для получения таких продуктов обусловлена механизмом и кинетикой химических и фазовых превращений при высоких температурах, а также возможностью введения энергии непосредственно в реакционный объем [https://studfiles.net/preview/3651436/page:2/].

Известен способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора [RU 2590887 G21C 7/24. Опуб. 10.07.2016. Бюл. №19], включающий получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида титана - TiO2 и оксида диспрозия - Dy2O3, взятых в эквимолярном соотношении, в планетарной шаровой мельнице в атмосфере аргона.

Недостатком способа является неизбежное истирание мелющих шаров и, соответственно, загрязнение получаемого порошка дополнительными примесями.

Известен способ получения поликристаллического нейтронопоглощающего материала на основе гафната диспрозия (Патент US 4992225, опубл. 12.02.1991), по которому оксид диспрозия (65-85 мас. %) смешивают с диоксидом гафния и полученную смесь в виде компактированного образца спекают в интервале температур 1500-2000°С.

В связи с использованием процесса твердофазного синтеза недостатком данного способа является многофазность полученного материала из-за возможности наличия в нем остатков непрореагировавших исходных веществ (в основном оксида диспрозия) и дополнительного размола спекшегося материала.

Наиболее близким к предлагаемому изобретению является способ получения поглотителя нейтронов для ядерных реакторов [Патент РФ №2124240, опубл. 27.12.1998], принятым в качестве прототипа. Материал синтезируют методом высокочастотного индукционного плавления смеси оксидов диспрозия, гафния и ниобия в холодном тигле. Смесь оксидов готовят перемешиванием в шаровой мельнице. Полученную смесь засыпают в водоохлаждаемый медный тигель, а в слой шихты вводят стружку металлического гафния в виде комка. При пуске установки стружка металлического гафния сгорает до оксида, образуя первичную ванну расплава. Синтез материала происходит в расплаве, что обеспечивает высокую однородность распределения в нем всех составляющих и отсутствие непрореагировавших оксидов. Расплав после завершения синтеза охлаждают с высокой скоростью для сохранения гранецентрированной кубической структуры.

Недостатком данного способа является многостадийность процесса, высокая температура синтеза (свыше 2300°С), что приводит к увеличению эксплуатационных расходов из-за использования специального комплекса аппаратуры, наличие дополнительного реагента (оксида ниобия), необходима операция размола полученного плава до определенной дисперсности, поскольку невозможно получить прочные и плотные изделия (таблетки) из материала с кубической структурой.

Задача, на решение которой направлено изобретение, заключается в создании высокоэффективного способа получения порошка титаната и/или гафната диспрозия, пригодного для изготовления поглощающих элементов ядерного реактора, при максимальном упрощении процесса синтеза порошка с минимальным использованием вспомогательного оборудования.

Поставленная задача решается тем, что порошок титаната и/или гафната диспрозия получают путем подачи в прямоточный плазмохимический реактор смеси растворов нитратов титана и/или гафния, диспрозия и азотной кислоты, обеспечивающей получение эквимолярной смеси оксидов, улавливания образующихся частиц порошка и их обжига, причем, улавливают частицы, требуемые по морфологии и дисперсности, а обжигают их при температуре получения необходимой кристаллической структуры.

На фиг. 1 показано электронно-микроскопическое изображение частиц порошков оксидной Ti-Dy композиции, на фиг. 2 - распределение кристаллитов по размерам в образце титаната диспрозия (1-ый пылеулавитель).

Термодинамические расчеты возможных равновесных составов при взаимодействии раствора нитратов титана и диспрозия с воздухом в температурном интервале 400-2000 К при давлении 0,1 МПа, выполненные с использованием программы «Астра-3» [Синярев Г.В., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К Применение ЭВМ для термодинамических расчетов металлургических процессов. - М.: Наука, 1982. - 264 с.], показали, что в результате полного взаимодействия всех компонентов рассматриваемой системы титан-диспрозий, нитраты должны полностью превратиться в оксиды и во всем температурном интервале находиться в конденсированной (твердой) фазе.

Технологическая схема по переработке смешанных растворов нитратов титана, диспрозия и азотной кислоты состояла из прямоточного цилиндрического плазмохимического реактора на основе ВЧ-индукционного разряда с тепловой мощностью 40-45 кВт с коаксиальным вводом реагентов, двух последовательно установленных вихревых пылеуловителя для отделения твердой фазы, конденсатор паров воды и аппаратуры для санитарной очистки сбросных газов. Производительность установки по раствору - до 25 л/час.

Раствор титана и диспрозия готовили смешением индивидуальных растворов нитратов титана, диспрозия и азотной кислоты в соотношении, обеспечивающим получение эквимолярной смеси оксидов.

Удельную поверхность полученных наноструктурных оксидных композиций определяли газохроматографическим методом тепловой десорбции аргона по ГОСТ 28794-90. Морфологический и гранулометрический составы порошков определяли методом методами дифракционной электронной микроскопии (фиг. 1).

В результате проведенных экспериментов получен титанат диспрозия с эквимолярным соотношением входящих в него оксидов, при этом:

- 11% об. составляли частицы в виде сплошных монокристаллических сфер;

- в 1-ом пылеуловителе в количестве 80% об. присутствовали частицы порошка в виде поликристаллических полых сфер, во 2-ом их доля - 55% об.;

- остальная часть порошка представляла собой монокристаллические частицы: пленки и частицы осколочной формы.

При сопоставлении результатов анализов проб, взятых из первого и второго пылеуловителей по ходу движения пылегазовой смеси из плазмохимического реактора, получено, что возможно выделение и концентрирование порошков по морфологии и гранулометрии. По результатам рентгенофазового анализ (РФА) рассчитаны размеры кристаллитов титаната диспрозия с эквимолярным соотношением оксидов. Функция распределения кристаллитов по размерам показана на фиг. 2.

Образцы титан-диспрозиевых комбинаций, полученных по плазмохимической технологии, по данным РФА, представляют собой механическую смесь двух фаз.

На основании экспериментов установлено, что:

-1-й пылеуловитель улавливал 90% образующегося порошка и он имел удельную поверхность 17-19 м /г, во 2-м пылеуловителе - 21-24 м2/г;

- электронно-микроскопический анализ гранулометрии и морфологии порошков из обоих пылеуловителей показал, что в первом улавливаются более крупные и монолитные сферические частицы. Продукт из всех партий по морфологическому набору частиц однотипным с преобладанием пустотелых сфер, со средним разделом 200 нм. При этом размеры включенных в сферы кристаллитов находились в пределах 10-60 нм.

При нагреве до 1000°С изменений в кристаллической структуре порошков титан-диспрозиевых оксидных композиций не наблюдалось. При нагреве от 1050°С до 1600°С структура этого материала изменялась от кубической фазы, типа флюорита, до гексагональной.

Поскольку дисперсность, морфология и кристаллическая структура материала определяют его ядерно-физические характеристики, можно утверждать, что подбором условий улавливания целевого продукта в пылеуловителях можно выделить требуемую по морфологии и дисперсности фракцию и последующим обжигом придать ей необходимую кристаллическую структуру.

Эксперименты, проведенные со смесью растворов нитратов циркония, диспрозия и азотной кислоты в соотношении, обеспечивающим получение эквимолярной смеси оксидов, показали аналогичные результаты.

Похожие патенты RU2686479C1

название год авторы номер документа
Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора 2016
  • Еремеева Жанна Владимировна
  • Мякишева Лариса Васильевна
  • Панов Владимир Сергеевич
  • Лопатин Владимир Юрьевич
  • Пацера Евгений Александрович
  • Сидоренко Дарья Александровна
  • Непапушев Андрей Александрович
RU2679822C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНАТА ДИСПРОЗИЯ ДЛЯ ПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ЯДЕРНОГО РЕАКТОРА 2015
  • Панов Владимир Сергеевич
  • Еремеева Жанна Владимировна
  • Мякишева Лариса Васильевна
  • Московских Дмитрий Олегович
  • Непапушев Андрей Александрович
  • Росляков Сергей Игоревич
RU2590887C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВЫХ КОНЦЕНТРАЦИЙ ОСНОВНЫХ И ПРИМЕСНЫХ ЭЛЕМЕНТОВ В МАТЕРИАЛАХ И ИЗДЕЛИЯХ ИЗ ТИТАНАТА ДИСПРОЗИЯ (DyO·TiO) ГАФНАТА ДИСПРОЗИЯ (nDyO·mHfO) И ИХ СМЕСЕЙ 2011
  • Смирнова Ирина Михайловна
  • Захаров Анатолий Васильевич
RU2449261C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ ГАФНАТА ДИСПРОЗИЯ И КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ИХ ОСНОВЕ 2014
  • Попов Виктор Владимирович
  • Петрунин Вадим Федорович
  • Коровин Сергей Александрович
RU2565712C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ И КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ СМЕШАННЫХ ОКСИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И МЕТАЛЛОВ ПОДГРУППЫ IVB 2011
  • Попов Виктор Владимирович
  • Петрунин Вадим Федорович
  • Коровин Сергей Александрович
RU2467983C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОГЛОЩАЮЩЕГО СЕРДЕЧНИКА ОРГАНА РЕГУЛИРОВАНИЯ ЯДЕРНОГО РЕАКТОРА 2009
  • Бочаров Олег Викторович
  • Шиков Александр Константинович
  • Неворотин Вадим Кириллович
  • Безумов Валерий Николаевич
  • Бородин Вячеслав Александрович
  • Ефимов Алексей Аркадьевич
RU2440215C2
ПОГЛОЩАЮЩИЙ СЕРДЕЧНИК ОРГАНА РЕГУЛИРОВАНИЯ АТОМНОГО РЕАКТОРА 1997
  • Захаров А.В.
  • Рисованый В.Д.
  • Клочков Е.П.
  • Суслов Д.Н.
  • Сидоренко О.Г.
  • Белозеров С.В.
  • Варлашова Е.Е.
  • Фридман С.Р.
RU2119199C1
Получение наноструктурированных материалов на основе BaZrO 2023
  • Гаджимагомедов Султанахмед Ханахмедович
  • Рабаданов Муртазали Хулатаевич
  • Сайпулаев Пайзула Магомедтагирович
  • Рабаданова Аида Энверовна
  • Палчаев Даир Каирович
  • Мурлиева Жарият Хаджиевна
  • Шабанов Наби Сайдуллахович
  • Рабаданов Камиль Шахриевич
  • Амиров Ахмед Магомедрасулович
  • Магомедов Курбан Эдуардович
  • Эмиров Руслан Мурадович
  • Алиханов Нариман Магомед-Расулович
  • Фараджев Шамиль Пиралиевич
  • Хибиева Лиана Руслановна
  • Шапиев Гусейн Шапиевич
RU2808853C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ОКСИДОВ МЕТАЛЛОВ 2007
  • Вылков Алексей Ильич
  • Остроушко Александр Александрович
  • Петров Александр Николаевич
  • Удилов Александр Евгеньевич
  • Цветков Дмитрий Сергеевич
RU2362739C1
ПОГЛОЩАЮЩИЙ НЕЙТРОНЫ МАТЕРИАЛ НА ОСНОВЕ ГАФНАТА ДИСПРОЗИЯ 2012
  • Неворотин Вадим Кириллович
  • Петрунин Вадим Фёдорович
  • Попов Виктор Владимирович
RU2522747C2

Иллюстрации к изобретению RU 2 686 479 C1

Реферат патента 2019 года ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ТИТАНАТА И/ИЛИ ГАФНАТА ДИСПРОЗИЯ

Изобретение относится к плазмохимическому способу получения высокодисперсных порошков титаната и/или гафната диспрозия. Плазмохимический способ получения порошка титаната и/или гафната диспрозия заключается в том, что его получают путем подачи в прямоточный плазмохимический реактор смеси растворов нитратов титана и/или гафния, диспрозия и азотной кислоты, обеспечивающей получение эквимолярной смеси оксидов, улавливания образующихся частиц порошка и их обжига. Изобретение позволяет создать высокоэффективный способ получения порошка титаната или гафната диспрозия при максимальном упрощении процесса синтеза порошка с минимальным использованием вспомогательного оборудования. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 686 479 C1

1. Плазмохимический способ получения порошка титаната и/или гафната диспрозия, заключающийся в том, что его получают путем подачи в прямоточный плазмохимический реактор смеси растворов нитратов титана и/или гафния, диспрозия и азотной кислоты, обеспечивающей получение эквимолярной смеси оксидов, улавливания образующихся частиц порошка и их обжига.

2. Способ по п. 1, включающий улавливание частиц порошка, требуемых по морфологии и дисперсности.

3. Способ по п. 1, включающий обжиг выделенных частиц порошка при температуре получения необходимой кристаллической структуры.

Документы, цитированные в отчете о поиске Патент 2019 года RU2686479C1

ПОГЛОТИТЕЛЬ НЕЙТРОНОВ ДЛЯ ЯДЕРНЫХ РЕАКТОРОВ 1996
  • Рисованый В.Д.
  • Захаров А.В.
  • Клочков Е.П.
  • Варлашова Е.Е.
  • Пономаренко В.Б.
  • Красовский Ю.К.
RU2124240C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ ГАФНАТА ДИСПРОЗИЯ И КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ИХ ОСНОВЕ 2014
  • Попов Виктор Владимирович
  • Петрунин Вадим Федорович
  • Коровин Сергей Александрович
RU2565712C2
Способ получения титанатов, цирконатов и гафнатов щелочноземельных металлов 1979
  • Кобзарь-Зленко В.А.
  • Коновалов О.М.
SU778157A1
Способ получения титанатов 1979
  • Майдукова Тамара Павловна
  • Бутузова Татьяна Александровна
  • Абрамова Рузана Иосифовна
  • Мазо Светлана Моисеевна
SU859305A1
US 20090170961 A1, 02.07.2009.

RU 2 686 479 C1

Авторы

Дедов Николай Владимирович

Русаков Игорь Юрьевич

Жиганов Александр Николаевич

Точилин Сергей Борисович

Даты

2019-04-29Публикация

2018-06-05Подача