Способ получения композиционного материала биотехнологического назначения Российский патент 2019 года по МПК A61K33/38 B82Y5/00 C01B32/198 C01G5/00 A61L2/18 A61L2/25 

Описание патента на изобретение RU2687283C1

Изобретение относится к области биотехнологий и наномедицины, в частности, к способам получения композиционного материала с антимикробными свойствами на основе оксида графена и наночастиц серебра и может найти применение, главным образом, для изготовления препаратов, подавляющих жизнедеятельность микроорганизмов.

Серебро, в отличие от органических (химических) консервантов и дезинфектантов, - природный элемент, не загрязняющий природу. Являясь сильным биоцидом для микробов и вирусов, серебро, в отличие от других металлов, в то же время гораздо менее токсично для многоклеточных организмов. В последние десятилетия в связи с широким использованием антибиотиков и химических консервантов ускоряется процесс появления резистентных штаммов микроорганизмов. Тогда как серебро не создает резистентных штаммов, убивая возбудителей на 100% и не давая им мутировать и размножаться. Однако разные виды серебра в разных формах обладают разными свойствами. Наиболее широко известны препараты на основе катионного серебра (Ag+), в том числе, в составе оксида серебра, солей серебра (нитратов, сульфатов, фосфатов), комплексов серебра (цитратов или лактатов), свободных аквакатионов серебра, а также препараты на основе коллоидного серебра, содержащие, особенно в случае коллоидного серебра, полученного электрохимически, в качестве примесей к металлическому серебру значительное количество катионного серебра в виде оксида или соли.

Препараты так называемого металлического микродисперсного или нанодисперсного серебра, кластерного серебра, в которых основное количество серебра находится в малотоксичной металлической форме Ag0, обладают высокой эффективностью и существенно более низкой токсичностью для людей, чем катионное серебро.

На сегодняшний день предложено большое количество препаратов на основе коллоидного металлического серебра, которые находят широкое применение в медицине как антисептические средства наружного применения. Для стабилизации частиц серебра в этих препаратах используются различные матрицы.

В настоящее время в связи с широким распространением антибиотикорезистентности микробов наблюдается усиление интереса к препаратам серебра. Так, получены соединения серебра с гистидином, триптофаном и аргинином по реакции комплексообразования с содержанием серебра 40-50% (Химико-фармацевтический журнал, 2000, №34(5), с. 34-35; Химико-фармацевтический журнал, 2001, №35(9), с. 35-36). Эти соединения проявляют антимикробную активность в отношении Staphylococcus aureus, Candida albigans, Bacillus subtilis и некоторых других бактерий.

Недостатками указанных соединений является то, что они плохо растворимы в воде (0,1%); наличие аминокислот в составе может вызывать побочные негативные воздействия; серебро в них связано с органическим лигандом в виде комплекса.

Известен способ получения нанокомпозита серебра, обладающего антимикробным действием (Патент РФ №2611999; МПК A61K 9/14, A61K 33/38, A61K 47/36, A61K 47/22, А61Р 31/00, А61Р 35/00, B82Y 5/00; опубл. 05.08.2015). В качестве стабилизатора наночастиц применяется природный биоконъюгат арабиногалактана с флавоноидами с размером наночастиц серебра 1.7-90.0 нм и их содержанием в композите - 1.3-17.5%.

Находящиеся в макромолекулах арабиногалактана высокоактивные восстановители (флавоноиды) могут выступать в роли восстановителя катионов серебра до нуль-валентного состояния этого металла (Журнал физической химии, 2003, Т. 77, №9, с. 1683-1692), что позволяет проводить реакцию в среде с нейтральными значениями рН без нагревания и без деградации молекулы арабиногалактана.

Известен способ получения нанокомпозитного материала оксида графена с наночастицами серебра (Physical Chemistry Chemical Physics, 2015, №17, с. 18443-18448), не требующий дополнительных стадий и реагентов и состоящий в нагревании водной суспензии оксида графена (Chemistry of Materials, 1999, №11, с. 771-778) с раствором нитрата серебра с прикапыванием цитрата натрия. Получаемый гибридный материал следующего состава: наночастицы серебра (≈ 15.6 нм) - наночастицы серебра (≈ 57.5 нм) - оксид графена - позволяет мультиплексно детектировать различные аналиты на уровне концентраций 10-6-10-12 М.

Недостатком известного способа является невозможность контроля процессов зародышеобразования и получения наночастиц серебра с узким распределением частиц по размерам, что не позволяет использовать получаемый нанокомпозитный материал в качестве активного слоя в сенсорном устройстве для количественного определения актуальных аналитов.

Известен способ получения композиционного материала на основе оксида графена и наночастиц серебра (Journal of Nanobiotechnology, 2016, 14:12, с. 2-17), включающий синтез оксида графена (GO), синтез наночастиц чистого серебра (AgNP) и синтез нанокомпозита оксидов серебра и графена (GOAg). Принят за прототип.

Синтез оксида графена (GO). Пластинки оксида графена синтезированы модифицированным методом Хаммерса (Journal of the American Chemical Society, 1958, 80(6), с. 1339; Carbohydrate Polymers, 2015, 123, с. 217-227). Природный графит был предварительно обработан для обеспечения полного окисления. Для этого графитовый порошок (1.0 г) нагревали при температуре 90°С в концентрированной серной кислоте H2SO4 (4.4 мл), содержащей персульфат калия K2S2O8 (0.8 г) и пентоксид фосфора P2O5 (0.8 г).

Кислотную смесь выдерживали, помешивая на конфорке, в течение 4.5 ч. Затем смесь разбавляли в дистиллированной воде и оставляли на выдержку на ночь. Далее ее фильтровали через 0.22 мкм мембранный фильтр (миллипору), промывая дистиллированной водой, и полученный осадок сушили при комнатной температуре в течение ночи.

Для окисления графен предварительно добавляли в охлажденную колбу (0°С), содержащую H2SO4 (40 мл), в которую постепенно добавляли перманганат калия KMnO4 (5.0 г), и контролировали температуру во избежание превышения 10°С посредством ледяной бани. Затем смеси позволяли реагировать при температуре 35°С в течение 2 ч, после чего была добавлена дистиллированная вода небольшими дозами в ледяной бане для поддержания температуры ниже 50°С, и смесь перемешивали еще 2 часа. Окисление графена осуществляли добавлением перекиси водорода H2O2 (30 объемн. %). Полученную ярко-желтую смесь оставляли отстаиваться на 2 дня. Смесь фильтровали через 0.22 мкм мембранный фильтр с последующим центрифугированием при добавлении соляной кислоты HCl (10 мас. %) и дистиллированной воды для удаления ионов металлов и кислоты. Полученный продукт диализовали (трубка диализа fisherbrand 12.000-14.000 da) в течение 10 дней для удаления остаточных солей. Дисперсию оксида графена сохраняли в герметичной емкости, защищенной от влажности и света.

Синтез наночастиц чистого серебра (AgNP). Наночастицы чистого серебра были синтезированы по методу Туркевича (Discussions of the Faraday Society, 1951, 11, с. 55-75). Нитрат серебра AgNO3 (8.4 мг) растворяли в 40 мл дистиллированной воды и нагревали с обратным холодильником. После закипания раствора в него прикапывали раствор цитрата натрия (10 мл, 1 ммоль л-1). Реакцию проводили при температуре 110-130°С в течение 30 мин. Дисперсию серебра диализовали в течение 48 ч в токе дистиллированной воды для удаления остаточных солей (трубка диализа fisherbrand 12.000-14.000 da) и помещали для хранения в охлаждаемом сосуде, защищенном от света.

Синтез нанокомпозита оксидов серебра и графена (GOAg). Композит GOAg синтезировали по модифицированный методу Туркевича (Colloids and Surfaces В: Biointerfaces, 2014, 113, с. 115-124; International Journal of Nanomedicine, 2015, 10, c. 6847-6861). Для этого оксид графена (6.2 мг) диспергировали в дистиллированной воде (20 мл) и обрабатывали ультразвуком в течение 30 мин. Далее AgNO3 (8.4 мг), растворенный в дистиллированной воде (20 мл), добавлялся к предыдущему и обрабатывался ультразвуком в течение 30 минут. Затем смесь нагревали с обратным холодильником, и при достижении температуры около 110°С добавляли по каплям раствор цитрата натрия (10 мл, 1 ммоль л-1). Реакцию выдерживали при температуре 130°С в течение 50 мин. Полученная дисперсия GOAg диализировалась в течение 48 ч для удаления остатков солей (трубка диализа fisherbrand 12.000-14.000 da). Полученную дисперсию хранили в герметически закрытом сосуде, защищенном от света.

Однако данный способ получения композиционного материала на основе оксида графена и наночастиц серебра предполагает осуществление большого количества трудоемких и длительных стадий синтеза, что приводит к неполной воспроизводимости свойств получаемых материалов. Кроме того, из-за использования дополнительных реагентов - стабилизаторов и поверхностно-активных веществ (ПАВ) - необходимым этапом получения геля являются многократные промывки. Неполнота отмывки наночастиц серебра от ПАВ и стабилизаторов приводит к появлению значительного количества балластных веществ, приводящих к снижению эффективности применения композитного материала.

Задача, на решение которой направлено изобретение, заключается в упрощении технологии, снижении затрат на изготовление композиционного материала и повышении воспроизводимости его свойств.

Это достигается тем, что в способе получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающем синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку, согласно изобретению, в качестве стабилизатора наночастиц используют оксид графена «Таунит» в виде водной суспензии, а синтез композиционного материала осуществляют смешением водной суспензии оксида графена «Таунит» с водной суспензией наночастиц серебра с нулевой валентностью, в качестве которой используют концентрат коллоидного серебра КНД-С-К 1% (10000 мг/дм3), в количестве от 0.3 до 1.5 объемов на 1 объем водной суспензии оксида графена «Таунит» при температуре 20-40°С и воздействии ультразвуком в течение 30 мин.

Осаждение композиционного материала производят в этаноле с последующим фильтрованием через воронку Шотта под вакуумом, осадок промывают тем же этанолом, и полученный композиционный материал высушивают в эксикаторе над безводным хлоридом кальция.

Использование в качестве стабилизатора наночастиц оксида графена и осуществление синтеза композиционного материала смешением водной суспензии оксида графена с водной суспензией наночастиц серебра с нулевой валентностью в количестве от 0.3 до 1.5 объемов на 1 объем водной суспензии графена при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. обеспечивает:

- упрощение технологии синтеза композиционного материала за счет сокращения номенклатуры применяемых материалов, проведения технологического процесса при комнатной температуре, снижения продолжительности синтеза композиционного материала и уменьшения расхода воды;

- минимизацию количества применяемого оборудования и соответственно снижение капитальных затрат;

- повышение качества за счет изготовления компонентов на специализированных предприятиях.

Осаждение композиционного материала в этаноле с последующим фильтрованием через воронку Шотта под вакуумом, промывка осадка тем же этанолом и высушивание полученного композиционного материала в эксикаторе над безводным хлоридом кальция обеспечивает расширение номенклатуры выпускаемого композиционного материала (как в виде суспензии, так и в виде порошка).

Использование в качестве водной суспензии оксида графена водной суспензии оксида графена «Таунит» и в качестве водной суспензии наночастиц серебра с нулевой валентностью концентрата коллоидного серебра КНД-С-К 1% (10000 мг/дм3) обеспечивает повышение качества за счет применения серийно выпускаемых продуктов.

Для осуществления изобретения применялись следующие исходные вещества.

Оксид графена «Таунит» представляет собой окисленные двумерные графеновые пластины толщиной до 15 нм в виде водной пасты. Основой оксида графена «Таунит» является химически диспергированный графит, содержащий незначительное количество неуглеродных примесей в виде серы. Оксид графена предназначен для использования в химической и нефтеперерабатывающей промышленности в качестве сырьевого компонента для придания конечному продукту (смазочным материалам, противоизносным составам и т.д.) триботехнических и противоизносных свойств.

Концентрат коллоидного серебра КНД-С-К 1%. Концентрация металлического серебра составляет 1% (10000 мг/дм3). Состоит из наночастиц серебра, взвешенных в деминерализованной (деионизированной) воде, не содержит вредных, токсичных и аллергенных компонентов и добавок. Преимущества: устойчивость, инертность, открывающая широкую возможность комбинации с другими микроэлементами и биологически активными веществами; повышенная биодоступность активных компонентов; не содержит ионные ассоциаты и ионы металлов; гипоаллергенность, отсутствие «эффекта привыкания» - исключается образование резистивных (устойчивых) форм микроорганизмов. Коллоидная форма металлического серебра наиболее эффективна, так как металл в виде катионов высвобождается из частиц только по мере его расходования, обеспечивая постоянный и долговременный эффект. Условия хранения: в стеклянной посуде или пищевых ПЭТФ-бутылках в сухом, темном, прохладном месте.

Способ получения композиционного материала биотехнологического назначения может быть осуществлен по указанным примерам.

Пример 1.

Смешивали водную суспензию оксида графена «Таунит» в количестве 2 мл с 5 мл концентрата коллоидного серебра КНД-С-К 1% (10000 мг/дм3) при постоянном перемешивании при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. Выход полученного композиционного материала составил 98% с содержанием в нем серебра 0.5%. Размер наночастиц серебра по данным просвечивающей электронной микроскопии - 1.7-8.0 нм. Средний размер наночастиц - 5.0 нм.

Пример 2.

Смешивали водную суспензию оксида графена «Таунит» в количестве 5 мл с 10 мл концентрата коллоидного серебра КНД-С-К 1% (10000 мг/дм3) при постоянном перемешивании при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. Выход полученного композиционного материала составил 95% с содержанием в нем серебра 2.6%. Размер наночастиц серебра по данным просвечивающей электронной микроскопии - 1.7-8.0 нм. Средний размер наночастиц - 5.0 нм.

Раствор выдерживали при перемешивании при комнатной температуре 20-25°С, осаждали композиционный материал в 25 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осадок промывали на Шотте тем же этанолом и высушивали полученный композиционный материал в эксикаторе над безводным хлористым кальцием. Выход полученного композиционного материала составил 95% с содержанием в нем серебра 20.4%. Размер наночастиц серебра по данным просвечивающей электронной микроскопии - 2.0-25.0 нм. Средний размер наночастиц - 6.5 нм.

Пример 3.

Смешивали водную суспензию оксида графена «Таунит» в количестве 3 мл с 10 мл концентрата коллоидного серебра КНД-С-К 1% (10000 мг/дм3) при постоянном перемешивании при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. Выход полученного композиционного материала составил 99% с содержанием в нем серебра 0.6%. Размер наночастиц серебра по данным просвечивающей электронной микроскопии - 1.7-8.0 нм. Средний размер наночастиц - 5.0 нм.

Пример 4.

Смешивали водную суспензию оксида графена «Таунит» в количестве 5 мл с 20 мл концентрата коллоидного серебра КНД-С-К 1% (10000 мг/дм3) при постоянном перемешивании при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. Затем раствор выдерживали при перемешивании при комнатной температуре 20-25°С, осаждали композиционный материал в 15 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осадок промывали на Шотте тем же этанолом и высушивали полученный композиционный материал в эксикаторе над безводным хлористым кальцием. Выход полученного композиционного материала составил 96% с содержанием в нем серебра 3%. Размер наночастиц серебра по данным просвечивающей электронной микроскопии - 2.0-9.0 нм. Средний размер наночастиц серебра - 5.3 нм.

Изучение антимикробного действия полученного композиционного материала с содержанием серебра 12.5% проводили методом двукратных серийных разведений на референтных штаммах, полученных из коллекции микроорганизмов (Candida albicans АТСС №24433, Staphylococcus aureus АТСС №25923, Escherichia coli АТСС №25922, Enterococcus faecalis АТСС №22212, Pseudomonas aeruginosa ATCC №27853).

Чувствительность опытных штаммов микроорганизмов к наночастицам серебра определяли in vitro на виноградно-сахарном бульоне (ВСБ) и среде Сабуро (по стандартам МУК 4.21890-04) на основании динамики роста культуры. Антимикробную активность оценивали в диапазоне концентраций от 0,1% до 0,01% (от 1 мг/мл до 0,01 мг/мл). Препарат предварительно разводили в ВСБ. Тестируемые штаммы микроорганизмов добавляли по 0,1 мл (0,6 единиц по стандарту мутности МакФарланда) в 5 мл каждого разведения исследуемого вещества.

В результате проведенных экспериментов установлено, что серебряный композиционный материал, полученный с использованием в качестве стабилизирующей матрицы оксида графена, сорбирующего коллоидное серебро, обладает антимикробной активностью в отношении исследуемых штаммов микроорганизмов (таблица 1). В контрольных пробах, т.е. в отсутствие серебра, наблюдается рост тест-культур.

Антибактериальная эффективность наносеребра настолько высока, что для стерилизации достаточно 0,5-1 мг/дм3. Из этого следует, что при использовании полученного композита ОГ-Ag его необходимо разбавлять водой по меньшей мере в 2×103-2×104 раз, учитывая синергетическое воздействие оксида графена.

Заявляемый способ получения композиционного материала биотехнологического назначения позволяет упростить технологию, снизить затраты на изготовление композиционного материала и повысить воспроизводимость его свойств.

Похожие патенты RU2687283C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛА БИОТЕХНОЛОГИЧЕСКОГО НАЗНАЧЕНИЯ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДОВ СЕРЕБРА И МЕДИ 2019
  • Гусев Александр Анатольевич
  • Захарова Ольга Владимировна
  • Ткачев Алексей Григорьевич
  • Меметов Нариман Рустемович
  • Протасов Артем Сергеевич
RU2737851C1
Нанокомпозит серебра на основе конъюгата арабиногалактана и флавоноидов, обладающий антимикробным и противоопухолевым действием, и способ его получения 2015
  • Погодаева Наталья Николаевна
  • Кузнецов Сергей Викторович
  • Смирнова Екатерина Александровна
  • Карнаухова Ольга Геннадьевна
  • Силкин Иван Иванович
  • Лозовская Евгения Александровна
  • Сухов Борис Геннадьевич
  • Злобин Владимир Игоревич
  • Трофимов Борис Александрович
RU2611999C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ 2018
  • Гусев Александр Анатольевич
  • Захарова Ольга Владимировна
  • Ткачев Алексей Григорьевич
  • Меметов Нариман Рустемович
  • Протасов Артем Сергеевич
RU2698713C1
Способ масштабирования синтеза оксида графена 2021
  • Абделхалим Абделсаттар Осама Елемам
  • Агеев Сергей Вадимович
  • Семёнов Константин Николаевич
  • Шаройко Владимир Владимирович
  • Майстренко Дмитрий Николаевич
  • Молчанов Олег Евгеньевич
  • Станжевский Андрей Алексеевич
  • Попов Сергей Александрович
RU2783099C2
ГРАФЕНОВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ СКОЛЬЗЯЩЕГО КОНТАКТА 2018
  • Андерссон, Анна
  • Тахер, Мамун
  • Тахершамси, Лейли
  • Греннберг, Хелена
  • Янссон, Ульф
  • Воландер, Мартин
RU2720281C1
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ГИДРОКСИДОВ И ОКСИДОВ НИКЕЛЯ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2023
  • Рабчинский Максим Константинович
  • Сысоев Виктор Владимирович
  • Рыжков Сергей Александрович
  • Стручков Николай Сергеевич
  • Соломатин Максим Андреевич
  • Варежников Алексей Сергеевич
  • Червякова Полина Демидовна
  • Савельев Святослав Даниилович
  • Габрелян Владимир Сасунович
  • Улин Николай Владимирович
  • Кириленко Демид Александрович
  • Павлов Сергей Игоревич
  • Брунков Павел Николаевич
RU2814613C1
КОМПОЗИЦИЯ БИНАРНОЙ КОЛЛОИДНОЙ СМЕСИ НАНОСТРУКТУРНЫХ ЧАСТИЦ СЕРЕБРА И ИОНОВ СЕРЕБРА В СТАБИЛИЗАТОРЕ, ОБЛАДАЮЩАЯ АНТИМИКРОБНЫМ И АНТИТОКСИЧЕСКИМ ДЕЙСТВИЕМ (ВАРИАНТЫ) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2015
  • Герасименя Валерий Павлович
  • Клыков Михаил Александрович
  • Захаров Сергей Викторович
  • Халангот Мая Оразовна
  • Воронков Алексей Геннадьевич
  • Машков Виталий Владимирович
RU2601757C1
КАТАЛИЗАТОРЫ НА ОСНОВЕ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ (PGM) ДЛЯ ОБРАБОТКИ АВТОМОБИЛЬНЫХ ВЫХЛОПОВ 2016
  • Карпов Андрей
  • Прели Дэвид
  • Вассерманн Кнут
  • Зундерманн Андреас
  • Чои Санг-Ил
  • Лу Пинг
  • Ксиа Йоунан
RU2731104C2
СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ НАНОЧАСТИЦ СЕРЕБРА 2015
  • Бурмистров Василий Александрович
  • Бурмистров Антон Васильевич
  • Бурмистров Илья Васильевич
  • Бурмистров Александр Васильевич
  • Пестряков Алексей Николаевич
  • Одегова Галина Викторовна
  • Богданчикова Нина Евгеньевна
RU2602534C2
Способ получения состава для антимикробного покрытия на основе ассоциатов нанокристаллов сульфида серебра с молекулами метиленового голубого 2020
  • Овчинников Олег Владимирович
  • Смирнов Михаил Сергеевич
  • Перепелица Алексей Сергеевич
  • Кондратенко Тамара Сергеевна
  • Гревцева Ирина Геннадьевна
  • Попов Василий Николаевич
  • Шуваева Галина Павловна
  • Корнеева Ольга Сергеевна
RU2750232C1

Реферат патента 2019 года Способ получения композиционного материала биотехнологического назначения

Предложен способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку. В качестве стабилизатора наночастиц используют оксид графена «Таунит» в виде водной суспензии, а синтез композиционного материала осуществляют смешением водной суспензии оксида графена «Таунит» с водной суспензией наночастиц серебра с нулевой валентностью, в качестве которой используют концентрат коллоидного серебра КНД-С-К 1% (10000 мг/дм3), в количестве от 0,3 до 1,5 объемов на 1 объем водной суспензии оксида графена «Таунит» при температуре 20-40°С и воздействии ультразвуком в течение 30 мин. Технический результат – упрощение технологии, снижение затрат на изготовление композиционного материала и повышение воспроизводимости его свойств. 1 з.п. ф-лы, 1 табл., 4 пр.

Формула изобретения RU 2 687 283 C1

1. Способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку, отличающийся тем, что в качестве стабилизатора наночастиц используют оксид графена «Таунит» в виде водной суспензии, а синтез композиционного материала осуществляют смешением водной суспензии оксида графена «Таунит» с водной суспензией наночастиц серебра с нулевой валентностью, в качестве которой используют концентрат коллоидного серебра КНД-С-К 1% (10000 мг/дм3), в количестве от 0,3 до 1,5 объемов на 1 объем водной суспензии оксида графена «Таунит» при температуре 20-40°С и воздействии ультразвуком в течение 30 мин.

2. Способ получения композиционного материала биотехнологического назначения по п. 1, отличающийся тем, что осаждение композиционного материала производят в этаноле с последующим фильтрованием через воронку Шотта под вакуумом, осадок промывают тем же этанолом и полученный композиционный материал высушивают в эксикаторе над безводным хлоридом кальция.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687283C1

RU 2194666 C2, 20.12.2002
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА 2008
  • Золотухина Екатерина Викторовна
  • Кравченко Тамара Александровна
  • Пешков Сергей Владимирович
RU2385293C2
CN 101721445 B, 01.06.2011
US 6171548 B2, 09.01.2001.

RU 2 687 283 C1

Авторы

Гусев Александр Анатольевич

Захарова Ольга Владимировна

Ткачев Алексей Григорьевич

Меметов Нариман Рустемович

Матвеев Сергей Михайлович

Морковина Светлана Сергеевна

Даты

2019-05-14Публикация

2018-11-30Подача