СЛОЖНЫЙ ОКСИД ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO Российский патент 2019 года по МПК C01F17/00 C01G39/02 C01B19/00 C30B29/22 C03C1/02 C03C6/00 

Описание патента на изобретение RU2690812C1

Заявляемое изобретение относится к области химии и касается нового сложного оксида празеодима, молибдена и теллура Pr2Mo2Te2O13, который может найти применение как компонент шихты для получения празеодимсодержащих теллуритно-молибдатных стекол.

К настоящему времени известно соединение, являющееся сложным оксидом празеодима, молибдена и теллура, состава Pr2MoTe4O14 (Inorganic Chemistry 46 (2007) 7012-7023). Соединения другого состава, образованного празеодимом, молибденом, теллуром и кислородом, из уровня техники не известны. Для получения Pr2MoTe4O14 смесь Pr2O3, MoO3 и TeO2 нагревают в вакуумированной кварцевой ампуле в течение 6 суток при температуре 750°С. Существенным недостатком является высокая продолжительность выполнения синтеза. Кроме этого, не известно использование полученного известным способом сложного оксида для получения стекол системы TeO2 - MoO3 - Pr2O3.

Задачей изобретения является создание нового сложного оксида празеодима, молибдена и теллура, отличающегося по составу от Pr2MoTe4O14, пригодного для введения в состав шихты для получения празеодимсодержащих теллуритно-молибдатных стекол.

Техническим результатом от использования предлагаемого изобретения снижение температуры и продолжительности синтеза.

Поставленная задача достигается тем, что полученный сложный оксид празеодима, молибдена, теллура имеет химическую формулу Pr2Mo2Te2O13.

В таблице 1 представлены данные о межплоскостных расстояниях и относительных интенсивностях рефлексов полученного соединения Pr2Mo2Te2O13.

На фиг. 1 представлена дифрактограмма порошка соединения Pr2Mo2Te2O13, полученного по примеру 1. В синтезе соблюдены пропорции исходных веществ в соответствии с заявляемым изобретением.

На фиг. 2 представлена дифрактограмма смеси кристаллов полученного соединения Pr2Mo2Te2O13 и известного соединения Te2MoO7 из исходных веществ, смешанных в соотношениях, отличающихся от заявляемых. Синтез описан в примере 2.

На фиг. 3 представлена дифрактограмма стекла состава 25TeO2 - 50МоО3 - 25PrO1.5, полученного из шихты, содержащей Pr2Mo2Te2O13.

Получение сложного оксида празеодима, молибдена и теллура Pr2Mo2Te2O13 осуществляют следующим образом.

Отбирают навески исходных соединений Pr(NO3)3⋅6H2O, (NH4)6Mo7O24⋅4H2O, H6TeO6 таких масс, чтобы выполнялось соотношение атомов Pr : Мо : Те, равное 1:1:1. Далее навески по отдельности растворяют в дистиллированной воде, смешивают полученные растворы. При смешивании растворов выпадает осадок. Осадок и окружающий его раствор выпаривают досуха, не разделяя их. Полученный сухой остаток измельчают и прокаливают при температуре не менее 700°С в течение 3-5 часов. После прокаливания соединение представляет собой порошок светло-зеленого цвета.

Если при синтезе соединения Pr2Mo2Te2O13 нарушить отношение атомов Pr : Мо : Те, равное 1:1:1, и изменить содержание любого из компонентов, то в результате прокаливания получается смесь веществ. Кроме синтезируемого Pr2Mo2Te2O13, в системе будет присутствовать дополнительно бинарный или сложный оксид, содержащий тот компонент, содержание которого было превышено. Условия термической обработки (температура 700°С) подобраны экспериментально. Температура прокаливания может превышать 700°С, но это не улучшает качество продукта синтеза и поэтому не целесообразно. При температурах ниже 700°С целевая твердая фаза не образуется либо содержит примеси исходных веществ или других возможных продуктов реакции либо не обладает достаточной кристалличностью.

Продолжительность термической обработки найдена экспериментально и составляет от 3 до 5 часов. При меньшей продолжительности термической обработки процесс формирования целевой фазы оказывается незавершенным. Продукт содержит примеси исходных веществ или промежуточных продуктов реакции или не обладает достаточной кристалличностью. Увеличение продолжительности термической обработки свыше 5 часов не улучшает качества продукта и потому не целесообразно.

В рентгенограмме отсутствуют рефлексы, относящихся к исходным веществам Pr(NO3)3⋅6H2O, (NH4)6Mo7O24⋅4H2O, H6TeO6 и продуктам их термического разложения Pr2O3, MoO3, TeO2, что свидетельствует о том, что в системе произошло химическое взаимодействие и образование нового химического соединения, обладающего собственной характерной кристаллической структурой.

Полученный сложный оксид празеодима, молибдена и теллура Pr2Mo2Te2O13 применим (пригоден) в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол.

Ниже представлены примеры конкретного осуществления предлагаемого изобретения.

Пример. 1.

Навески гексагидрата нитрата празеодима массой 2.61 г, тетрагидрата гептамолибдата аммония массой 1.06 г и ортотеллуровой кислоты массой 1.38 г, которые соответствует соотношению атомов Pr : Мо : Те, равному 1:1:1, растворяли в воде, растворы смешивали, и эту смесь выпаривали досуха на воздухе на электрической плитке. Сухой остаток измельчали в фарфоровой ступке, помещали в фарфоровый тигель и прокаливали при 700°С в течение 5 часов. Это привело к получению индивидуальной фазы соединения Pr2Mo2Te2O13. Дифрактограмму полученного соединения регистрировали на дифрактометре Shimadzu LabX XRD-6000, излучение CuKα. Дифрактограмма полученного соединения содержит только пики, характерные для целевого соединения. Дифрактограмма приведена на фиг. 1.

Пример 2.

Навески гексагидрата нитрата празеодима массой 2.61 г, тетрагидрата гептамолибдата аммония массой 0.53 г и ортотеллуровой кислоты массой 1.38 г, которые соответствует соотношению атомов Pr : Мо: Те, равному 2:1:2, растворяли в воде, растворы смешивали, и эту смесь выпаривали досуха на воздухе на электрической плитке. Сухой остаток измельчали в фарфоровой ступке, помещали в фарфоровый тигель и прокаливали при 600°С в течение 5 часов. В результате получена смесь соединений, включающая Pr2Mo2Te2O13. Дифрактограмму полученного образца регистрировали на дифрактометре Shimadzu LabX XRD-6000, излучение CuKα. Дифрактограмма полученного образца приведена на фиг. 2. В дифрактограмме наряду с рефлексами от целевой фазы представлены сигналы от тройного оксида Te2MoO7 и других неидентифицированных фаз. Кроме того, пики в дифрактограмме, соответствующие целевому соединению, уширены по сравнению с пиками того же вещества, полученного при 700°С (см. фиг. 1).

Пример 3.

Для синтеза стекла состава 25TeO2 - 50МоО3 - 25PrO1.5 в фарфоровой ступке смешивали навески сложного оксида Pr2Mo2Te2O13 массой 14.00 г и оксида молибдена MoO3 массой 4.30 г. Смесь помещали в фарфоровый тигель и подвергали плавке в муфельной печи при 820°С. Полученный расплав выливали в стальную форму, разогретую до 400°С, и медленно охлаждали до комнатной температуры. После охлаждения полученный твердый образец представляет собой стекло. Стеклообразное состояние подтверждено методом рентгенофазового анализа. Дифрактограмма приведена на фиг. 3.

Похожие патенты RU2690812C1

название год авторы номер документа
ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO 2018
  • Сибиркин Алексей Алексеевич
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
  • Горяев Владислав Михайлович
RU2686941C1
ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO 2018
  • Сибиркин Алексей Алексеевич
  • Горяев Владислав Михайлович
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2713841C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO 2018
  • Сибиркин Алексей Алексеевич
  • Горяев Владислав Михайлович
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2687420C1
ПРИМЕНЕНИЕ СЛОЖНОГО ОКСИДА ЛАНТАНА, МОЛИБДЕНА И ТЕЛЛУРА 2018
  • Сибиркин Алексей Алексеевич
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
  • Горяев Владислав Михайлович
RU2684087C1
СЛОЖНЫЙ ОКСИД ЛАНТАНА, МОЛИБДЕНА И ТЕЛЛУРА 2018
  • Сибиркин Алексей Алексеевич
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
  • Горяев Владислав Михайлович
RU2683834C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ЛАНТАНА, МОЛИБДЕНА И ТЕЛЛУРА 2018
  • Сибиркин Алексей Алексеевич
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
  • Горяев Владислав Михайлович
RU2683833C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO 2018
  • Сибиркин Алексей Алексеевич
  • Федотова Ирина Геннадьевна
  • Гаврин Станислав Андреевич
  • Горяев Владислав Михайлович
RU2687419C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ТЕЛЛУРИТНО-МОЛИБДАТНЫХ СТЕКОЛ (ВАРИАНТЫ) 2015
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Замятин Олег Андреевич
  • Горева Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2587199C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ТЕЛЛУРИТНЫХ СТЕКОЛ (ВАРИАНТЫ) 2015
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Замятин Олег Андреевич
  • Горева Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2584482C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОКОМПОНЕНТНЫХ ТЕЛЛУРИТНЫХ СТЕКОЛ 2015
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Замятин Олег Андреевич
  • Горева Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2584474C1

Иллюстрации к изобретению RU 2 690 812 C1

Реферат патента 2019 года СЛОЖНЫЙ ОКСИД ПРАЗЕОДИМА, МОЛИБДЕНА И ТЕЛЛУРА PrMoTeO

Изобретение относится к области химии и касается сложного оксида празеодима, молибдена, теллура, имеющего химическую формулу Pr2Mo2Te2O13, который может быть использован в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Техническим результатом от использования предлагаемого изобретения является снижение температуры и продолжительности синтеза. 3 ил., 1 табл., 3 пр.

Формула изобретения RU 2 690 812 C1

Сложный оксид празеодима, молибдена и теллура, имеющий химическую формулу Pr2Mo2Te2O13.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690812C1

HAI-LONG JIANG et al
New Luminescent Solids in the Ln-W(Mo)-Te-O-(Cl) Systems,"Inorganic Chemistry", Vol
Способ изготовления звездочек для французской бороны-катка 1922
  • Тарасов К.Ф.
SU46A1
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1
СПОСОБ ПОЛУЧЕНИЯ МНОГОКОМПОНЕНТНЫХ ТЕЛЛУРИТНЫХ СТЕКОЛ 2015
  • Чурбанов Михаил Федорович
  • Сибиркин Алексей Алексеевич
  • Замятин Олег Андреевич
  • Горева Ирина Геннадьевна
  • Гаврин Станислав Андреевич
RU2584474C1
FANG KONG et al., Second-Order Nonlinear Optical Materials Based on Metal Iodates, Selenites, and Tellurites, "Struct Bond", 2012, 144, рр 75-77.

RU 2 690 812 C1

Авторы

Сибиркин Алексей Алексеевич

Федотова Ирина Геннадьевна

Гаврин Станислав Андреевич

Горяев Владислав Михайлович

Даты

2019-06-05Публикация

2018-08-29Подача