Изобретение относится к производству строительных материалов, а именно крупнопористых легких бетонов, и может быть использовано для изготовления мелкоштучных конструкционно-теплоизоляционных стеновых изделий для малоэтажного и коттеджного строительства.
Известен крупнопористый бетон на модифицированном керамзитовом гравии [1]. В качестве модификатора керамзитового гравия применяется 1-3%-ный водный раствор плавиковой кислоты в количестве 10-12% от массы керамзита, которым обрабатывается поверхность заполнителя за 5-15 мин до приготовления бетонной смеси. При этом используется керамзитовый гравий, опудренный в процессе обжига при температуре 1000-1100°С доломитовой мукой в количестве 2-3% от массы керамзита.
Недостатком указанного крупнопористого бетона является трудоемкость изготовления бетонной смеси, связанная с опудриванием заполнителя доломитовой мукой в процессе высокотемпературного обжига, что усложняет технологию, повышает энергоемкость производства и, соответственно, ведет к удорожанию бетона и изделий на его основе.
Наиболее близким по технической сущности и достигаемому результату является крупнопористый бетон с использованием керамзитового гравия, пропитываемого до смешивания с цементом нанодисперсными добавками [2], получаемыми в результате ультразвукового диспергирования при частоте ультразвука 35 кГц водной суспензии с концентрацией твердой фазы 3%, содержащей, мас. %: метакаолин 65-70, суперпластификатор С-330-35 [3].
Однако данный крупнопористый бетонимеет следующие недостатки: относительно низкая прочность на сжатие, большой расход модифицирующих добавок (20-22% от массы заполнителя), сложность и длительность приготовления бетонной смеси.
Техническая задача, положенная в основу заявляемого изобретения, состоит в разработке способа приготовления смеси для изготовления крупнопористого легкого бетона, обеспечивающего повышенную адгезионную прочность между зернами крупного пористого заполнителя и затвердевшим вяжущим веществом, повышенную прочность на сжатие и пониженное водопоглощение бетона, сокращение расхода модифицирующих добавок, упрощение и ускорение технологии приготовления смеси.
Поставленная задача достигается тем, что способ приготовления смеси для изготовления крупнопористого легкого бетона, включающий смешение портландцемента, крупного пористого заполнителя, наномодификатора и воды отличается тем, что в качестве заполнителя применяется керамзитовый гравий, обрабатываемый ультразвуком частотой 35 кГц в воде в течение 3 мин, а в качестве наномодификатора - комплексная нанодисперсная добавка с размером частиц 20-80 нм, получаемая в виде суспензии путем ультразвукового диспергирования метакаолина в водной среде суперпластификатора С-3, при смешении портландцемента сначала с наномодификатором и частью воды затворения до получения цементного теста нормальной густоты, а затем с керамзитовым гравием и остатком воды при следующем соотношении компонентов, мас. %: портландцемент 25,4-28,7, керамзитовый гравий 62,4, наномодификатор 2-2,3, вода 6,6-10,2.
Пример. В качестве исходных сырьевых материалов при приготовлении смеси для изготовления крупнопористого легкого бетона применяли:
- бездобавочный нормально твердеющий портландцемент марки ЦЕМ I 42,5 Н ГОСТ 31108 (ЗАО «Мальцовский портландцемент», г. Фокино, Брянская область);
- керамзитовый гравий фракции 10-20 мм, марки по насыпной плотности М350, марки по прочности П50, водопоглощением по массе 14% (ОАО «Завод керамзитового гравия г. Новолукомль», республика Беларусь);
- комплексная нанодисперсная добавка, получаемая по патенту RU 2563264 [3] путем ультразвукового диспергирования при частоте ультразвука 35 кГц водной суспензии с концентрацией твердой фазы 3%, содержащей, мас. %: метакаолин 65-70, суперпластификатор С-330-35;
- водопроводная вода с показателем рН = 6,98-7,12.
Приготовление смеси осуществляли в следующей последовательности:
- получение в течение 7 мин наномодификатора (комплексной нанодисперсной добавки);
- 3-минутная ультразвуковая обработка керамзитового гравия в воде с помощью импульсного механоактиватора ПСБ-4035-04 при частоте ультразвука 35 кГц и температуре воды (20±2)°С;
- смешивание в течение 3 мин портландцемента с наномодификатором и частью воды затворения до получения теста нормальной густоты;
- смешивание в течение 1,5 мин наномодифицированного цементного теста с керамзитовым гравием, обработанным ультразвуком, до получения бетонной смеси маркой по подвижности П1.
Общая продолжительность приготовления бетонной смеси составляет 14 мин.
Из приготовленной смеси изготовляли образцы крупнопористого легкого бетона размерами 10×10×10 см согласно стандартной методике. Испытания образцов проводили через 28 суток нормального твердения. Составы бетонных смесей представлены в табл. 1, результаты испытаний образцов крупнопористого легкого бетона в табл. 2.
Из данных табл. 2 следует, что, по сравнению с контрольным составом №1, предлагаемый способ приготовления смеси для изготовления крупнопористого легкого бетона позволяет:
- повысить адгезионную прочность между зернами крупного пористого заполнителя и затвердевшим вяжущим веществом в 1,5, 2,3 и 4,2 раза при соотношениях цемента к керамзиту 1:2,46 (состав №2), 1:2,3 (состав №3) и 1:2,17 (состав №4) соответственно;
- повысить прочность на сжатие бетона в 1,7 раза (состав №3) и в 2,2 раза(состав №4) при незначительном изменении средней плотности;
- снизить водопоглощение бетона на 5,6% (состав №3) и на 14,4% (состав №4);
- снизить расход цемента на 6% без снижения класса бетона по прочности на сжатие (состав №2).
Повышение адгезионной прочности между зернами крупного пористого заполнителя и затвердевшим вяжущим веществом и прочности на сжатие предлагаемого крупнопористого легкого бетона достигается:
- увеличением шероховатости поверхности керамзитового гравия в результате ультразвуковой обработки в воде;
- улучшением смачивания обработанного керамзита наномодифицированным цементным тестом;
- направленным воздействием наночастиц добавки на формирование структуры цементного камня в зоне контакта с керамзитом, связанным с дополнительным образованием упрочняющих кристаллических сростков, идентичных гидросиликатам, гидроалюминатам кальция, эттрингиту и способствующих уплотнению цементной матрицы.
По сравнению с прототипом (состав №5), крупнопористый легкий бетон, изготовленный из смеси, приготовленной предложенным способом, отличается сокращенным расходом нанодисперсной добавки (от 12,3 до 2,2 мас. %) при одинаковом соотношении цемента к керамзиту 1:2,3 без снижения класса по прочности на сжатие, а также упрощенной и ускоренной от 23,5 до 14,5 мин технологией приготовления смеси.
Использованные источники:
1. Патент РФ 2448930. Керамзитобетон на модифицированном керамзитовом гравии / Минаков Ю.А., Кононова О.В., Софронов С.П.; Заявл. 09.11.2010. Опубл. 27.04.2012. Бюл. №12.
2. Пыкин А.А., Васюнина С.В., Калугин А.А., Споденейко А.А., Аверьяненко Ю.А., Александрова М.Н. Повышение эффективности крупнопористого керамзитобетона нанодисперсными добавками // Строительные материалы. 2015. №11. С. 20-23.
3. Патент РФ 2563264. Способ изготовления комплексной нанодисперсной добавки для высокопрочного бетона / Лукутцова Н.П., Пыкин А.А., Суглобов А.В.; Заявл. 30.07.2014. Опубл. 20.09.2015.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПЛЕКСНОЙ НАНОДИСПЕРСНОЙ ДОБАВКИ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА | 2014 |
|
RU2563264C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КЕРАМЗИТОБЕТОННОЙ СМЕСИ | 2001 |
|
RU2206542C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ КЕРАМЗИТОБЕТОННОЙ СМЕСИ | 2013 |
|
RU2544190C1 |
Способ модифицирования бетона комплексной добавкой, включающей гидротермальные наночастицы SiO и многослойные углеродные нанотрубки | 2020 |
|
RU2750497C1 |
БЕТОННАЯ СМЕСЬ | 2013 |
|
RU2536535C1 |
СПОСОБ НЕПРЕРЫВНОГО ИЗГОТОВЛЕНИЯ КРУПНОПОРИСТЫХ БЕТОННЫХ ИЗДЕЛИЙ, МОНОЛИТНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ | 2018 |
|
RU2703020C1 |
Мелкозернистая бетонная смесь | 2017 |
|
RU2649996C1 |
СОСТАВ КЕРАМЗИТОБЕТОННОЙ СМЕСИ | 2013 |
|
RU2527974C1 |
Способ получения цементной композиции | 2020 |
|
RU2742785C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ БЕТОННОЙ СМЕСИ НА ПОРИСТОМ ЗАПОЛНИТЕЛЕ | 2010 |
|
RU2452714C1 |
Изобретение относится к производству строительных материалов, а именно крупнопористых легких бетонов, и может быть использовано для изготовления мелкоштучных конструкционно-теплоизоляционных стеновых изделий для малоэтажного и коттеджного строительства. В способе приготовления смеси для изготовления крупнопористого легкого бетона, включающем смешение портландцемента, крупного пористого заполнителя, наномодификатора и воды, в качестве заполнителя применяют керамзитовый гравий, обрабатываемый ультразвуком частотой 35 кГц в воде в течение 3 мин, а в качестве наномодификатора – комплексную нанодисперсную добавку с размером частиц 20-80 нм, получаемую в виде суспензии путем ультразвукового диспергирования метакаолина в водной среде суперпластификатора С-3, при смешении портландцемента сначала с наномодификатором и частью воды затворения до получения цементного теста нормальной густоты, а затем с керамзитовым гравием и остатком воды при следующем соотношении компонентов, мас.%: портландцемент 25,4-28,7, керамзитовый гравий 62,4, наномодификатор 2-2,3, вода 6,6-10,2. Технический результат – повышение прочности на сжатие и снижение водопоглощения крупнопористого легкого бетона. 2 табл., 1 пр.
Способ приготовления смеси для изготовления крупнопористого легкого бетона, включающий смешение портландцемента, крупного пористого заполнителя, наномодификатора и воды, отличающийся тем, что в качестве заполнителя применяется керамзитовый гравий, обрабатываемый ультразвуком частотой 35 кГц в воде в течение 3 мин, а в качестве наномодификатора – комплексная нанодисперсная добавка с размером частиц 20-80 нм, получаемая в виде суспензии путем ультразвукового диспергирования метакаолина в водной среде суперпластификатора С-3, при смешении портландцемента сначала с наномодификатором и частью воды затворения до получения цементного теста нормальной густоты, а затем с керамзитовым гравием и остатком воды при следующем соотношении компонентов, мас.%: портландцемент 25,4 - 28,7, керамзитовый гравий 62,4, наномодификатор 2 - 2,3, вода 6,6 - 10,2.
ПЫКИН А.А и др | |||
Повышение эффективности крупнопористого керамзитобетона нанодисперсными добавками | |||
Строительные материалы, N11, 2015, с.20 - 23 | |||
КЕРАМЗИТОБЕТОН НА МОДИФИЦИРОВАННОМ КЕРАМЗИТОВОМ ГРАВИИ | 2010 |
|
RU2448930C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПЛЕКСНОЙ НАНОДИСПЕРСНОЙ ДОБАВКИ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА | 2014 |
|
RU2563264C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЯЧЕИСТЫХ МАТЕРИАЛОВ И СПОСОБ ЕЕ ПРИГОТОВЛЕНИЯ | 2010 |
|
RU2422408C1 |
Способ получения керамзитобетонных изделий | 1972 |
|
SU456799A1 |
Способ изготовления арболита | 2016 |
|
RU2620696C1 |
УСТРОЙСТВО ДЛЯ ПРЕДОТВРАЩЕНИЯ ПАДЕНИЯ И СОЕДИНИТЕЛЬНЫЙ ЭЛЕМЕНТ | 2013 |
|
RU2642041C2 |
Авторы
Даты
2019-06-11—Публикация
2018-01-17—Подача