Способ относится к области химии и может быть использован в качестве супер ионного проводника с защитным слоем и фотокатализатора с регулируемой активностью и с защитным слоем.
В работе [Kun-Le Jia, Jin Qu, Shu-Meng Нао, Fei An, Ya-Qiong Jing, Zhong-Zhen Yu. One-pot synthesis of bismuth silicate heterostructures with tunable morphology and excellent visible light photodegradation performances // Journal of Colloid and Interface Science 506 (2017) 255-262] был предложен гидротермальный способ синтеза гетероструктур в системе Bi2O3-SiO2. Для этого 972 мг Bi(NO3)3⋅5H2O добавляли в 40 мл деионизированной воды в качестве раствора А, а 0,25 ммоль СТАВ растворяли в 10 мл деионизированной воды, как раствор Б. После перемешивани раствора А в течение 30 мин, добавляли раствор В. В полученный раствор добавляли 444 мкл TEOS и его значение рН затем доводили до 9 путем капания NH3⋅H2O при энергичном перемешивании. После дополнительного перемешивания в течение 0,5 ч при комнатной температуре смесь переносили в 100 мл автоклав, покрытый тефлоном. После того, как автоклав запечатывали и нагревали до 180°С в течение 24 часов, его охлаждали до комнатной температуры, естественным путем. Наконец, осадки собирали центрифугированием, промывали деионизированной водой и этанолом несколько раз и сушили в печи при 80°С в течение 10 часов.
Однако при использовании данного способа не достигается:
1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду большого количества технологических операций, но еще и очень длительным по времени (более 37 часов);
2. использование в аналоге дополнительного оборудования (автоклав, центрифуги и т.д.), усложняет и удорожает процесс получения гетероструктуры;
3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение (промывка, обработка в центрифуге и т.д.) создают существенный риск загрязнения конечного материала посторонними веществами.
Похожие способы синтеза гетероструктур, имеющие схожие с данным аналогом недостатки и основанные на гидротермальном синтезе, также подробно рассмотрены в работах:
1. Amar Al-Keisya, Long Ren, Tian Zheng, Xun Xu, Michael Higgins, Weichang Hao, and Yi Du. Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures // Dalton Trans., 2017, DOI: 10.1039/C7DT03193A;
2. Liang Shi, Chonglei Xu, Xun Sun, Hua Zhang, Zhaoxin Liu, Xiaofei Qu, and Fanglin Du. Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation // Chemical routes to materials, https://doi.org/10.1007/s10853-018-2442-x;
3. Yimai Liang, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji, Shucai Gan. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Applied Surface Science (2015), http://dx.doi.org/10.1016/j.apsusc.2015.01.116;
4. Wenjun Wang, Hefeng Cheng, Baibiao Huang, Xiaolei Liu, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai. Hydrothermal synthesis of C3N4/BiOIO3 heterostructures with enhanced photocatalytic properties // Journal of Colloid and Interface Science 442 (2015) 97-102;
5. Di Liu, Wenqing Yao, Jun Wang, Yanfang Liu, Mo Zhang, Yongfa Zhu. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5photocatalyst // Applied Catalysis B: Environmental 172 (2015) 100-107.
В работе [Andriy V. Kozytskiy, Oleksandr L. Stroyuk, Mykola A. Skoryk, Volodymyr M. Dzhagan, Stepan Ya. Kuchmiy, Dietrich R.T. Zahn. Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures // Journal of Photochemistry and Photobiology A: Chemistry 303 (2015) 8-16] был предложен способ синтеза гетероструктур методом осаждения. Этанол и 2-пропанол высушивали при продолжительном кипении свежеотжатым СаО; с последующей дистилляцией. Пленки Titania на FTO (FTO/TiO2) были приготовлены по методике: в 0,45 г этилцеллюлозы растворяли в 7,3 г (9 мл) n-бутанола, затем добавляли 1,8 г глицерина. Раствор кипятили с обратным холодильником до полной гомогенизации и смешивали с 0,9 г порошка Р25 титана. Суспензию помещали в ультразвуковую ванну в течение 1 ч, затем кипятили с обратным холодильником при 80°С в течение 30 мин. Полученную пасту наносили на FTO методом док-лезвия, поддерживая толщину слоя, равную одному слою скотч-ленты. Пленки сушили при 70°С в течение 30 мин и отжигали при 450°С на воздухе в течение 1 часа.
Фотокаталитическое осаждение Sb2S3 на поверхности пленок TiO2 проводили из растворов этанола, содержащих SbCl3 (0,01М) и S8 (0,002М в пересчете на элементарную серу) в оптических стеклянных кюветах при непрерывном течении аргона. Раствор (5 мл) эвакуировали и освещали сфокусированным ультрафиолетовым светом (λ=310-390 нм) из ртутной лампы высокого давления мощностью 1000 Вт с интенсивностью 20 мВт/см2. Затем осажденные пленки аморфного Sb2S3 отжигались при 330°С в потоке аргона.
Пленки гидроксилсульфида индия (III) Inx(OH)ySz осаждались на поверхности TiO2. 20 мл водного 0,1М раствор тиоацетамида и 0,025М InCl3 нагревали до 70°С, затем добавляли водный раствор 0,25М раствора уксусной кислоты. После этого пленку FTO/TiO2 погружали в раствор и выдерживали в течение 10, 15, 20 или 40 минут, чтобы варьировать количество Inx(OH)ySz. Пленки SbO (ОН) на поверхности сульфида сурьмы осаждали, удерживая пленки FTO/TiO2/Sb2S3 погруженными в 0,01М SbCl3 в этаноле в течение 5 мин. с последующим погружением пленки в дистиллированную воду. Эта последовательная процедура повторялась до трех раз. Слой SbO (ОН) образуется в результате быстрого гидролиза SbCl3 при нейтральном рН.
Однако, при использовании данного способа не достигается:
1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду огромного количества технологических операций, но еще и очень длительным по времени;
2. использование в аналоге дополнительного оборудования (ультразвуковые установки, холодильники, баллоны с аргоном и средства его подачи, установки облучения ультрафиолетом и т.д.), существенно усложняет и удорожает процесс получения гетероструктуры;
3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение создают существенный риск загрязнения конечного материала посторонними веществами.
Похожие способы синтеза гетероструктур, имеющие схожие с данным аналогом недостатки и основанные на разных способах осаждения, также подробно рассмотрены в работах:
1. R. Loganathan, М. Jayasakthi, К. Prabakaran, R. Ramesh, P. Arivazhagan, К. Baskar. Studies on dislocation and surface morphology of AlxGa1-xN/GaN heterostructures grown by MOCVD // Journal of Alloys and Compounds 616(2014) 363-371;
2. Subhash Chand and Rajender Kumar. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique // Journal of Alloys and Compounds, Accepted Date: 6 June 2014, DOI: http://dx.doi.org/10.1016/j.jallcom.2014.06.042;
3. B.C. Luo, J. Wang, M.M. Duan, К.X. Jin, C.L. Chen. Synthesis and transport properties of Ca3Co4O9/ZnO heterostructure // Materials Letters 120 (2014) 133-135;
4. S. Upadhyay, A. Mandal, N. В. V. Subrahmanyam, P. Singh, P. Shete, B. Tongbram, S. Chakrabarti. Effects ofhigh-energy proton implantation on the luminescence properties of InAs submonolayer quantum dots // Journal of Luminescence 171 (2016) 27-32;
5. Yanqin Wang, Xiaofang Cheng, Xiaoting Meng, Hongwu Feng, Shaogui Yang, Cheng Sun. Preparation and characterization of Ag3PO4/BiOI heterostructure photocatalyst with highly visible-light-induced photocatalytic properties // Journal of Alloys and Compounds 632 (2015) 445-449;
6. Xiuzhen Zheng, Danzhen Li, Xiaofang Li, Jing Chen, Changsheng Cao, Jialin Fang, Jubao Wang, Yunhui He, Yi Zheng. Construction of ZnO/TiO2photonic crystal heterostructures forenhanced photocatalytic properties // Applied Catalysis B: Environmental 168 (2015) 408-415.
В работе [Hong-Jian Feng, M. Wang, F. Liu, B. Duan, J. Tian, X. Guo. Enhanced optical properties and the origin of carrier transport in BiFeO3/TiO2 heterostructures with 109° domain walls // Journal of Alloys and Compounds 628 (2015) 311-316] был предложен способ синтеза гетероструктур с помощью золь-гель метода. Золи BFO были приготовлены с использованием нитрата железа, нитрата висмута и уксусной кислоты в виде растворов веществ и 2-метоксиэтанола в качестве раствора. Раствор доводили до значения рН 4-5 путем добавления азотной кислоты. Затем к раствору добавляли лимонную кислоту в молярном соотношении 1:1 по отношению к нитратам металла в качестве комплексообразователя. Смесь перемешивали в течение 24 ч с получением золя. Конечная концентрация предшественника составляла 0,3 моль/л. Пленки были покрыты спиртом на стеклянных подложках с точки зрения его рентабельного применения. После каждого спинового покрытия пленки сушили при 80°С в течение 2 часов. Полученные пленки отжигали при 500°С на воздухе в течение 3 часов. Толщина пленок может контролироваться количеством слоев, покрытых спин-покрытием. Раствор предшественника ТО получали путем смешивания соответствующих количеств тетрабутилтитаната, растворенного в этаноле, и диэтаноламине, по каплям добавляя к перемешиваемому раствору в течение 2 часов. Пленки ТО фильтровали на пленках BFO и прокаливали при 500°С в течение 1 часа с толщиной пленок, контролируемых покрытыми слоями.
Однако, при использовании данного способа не достигается быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду большого количества технологических операций, но еще и длительным по времени.
Похожий способ синтеза гетероструктур, имеющий схожие с данным аналогом недостатки и основанный на золь-гель методе, также подробно рассмотрен в работе: Bilal Masood Pirzada, Niyaz A. Mirl, Nida Qutub, Owais Mehraj, Suhail Sabir M, M. Muneer. Synthesis, characterization and optimization of photocatalytic activityof TiO2/ZrO2 nanocomposite heterostructures. Materials Science and Engineering В 193 (2015) 137-145.
Сложный комбинированный способ синтеза был предложен отечественными учеными [В.А. Кутвицкий, О.В. Сорокина, Л.П. Маслов. Гетероструктуры на основе висмутсодержащих оксидных фаз и их использование в целях аналитического контроля. Часть 1. // Москва, МИТХТ, 2012]. В данной работе приведено несколько способов синтеза.
Способ 1. Технология синтеза многослойных гетерогенных образцов сравнения (МГОС):
Подготовка соединяемого материала (монокристаллические подложки). Монокристаллы соединений, участвующих в создании гетероструктуры, выращивали из расплава по методу Чохральского и нарезали на пластины. Затем проводилась процедура создания макрорельефа на поверхности пластин. Для этого их обезжиривали (карбонат натрия 6-10 мл, силикат натрия 5-10 мл, вторичный алкилсульфат «Прогресс» 15-20 мл) при температуре 80-90°С в течение 20-30 минут, с последующей промывкой в кипящей дистиллированной воде. После обезжиривания пластины сушили на воздухе. Затем на них наносили пленку фоторезиста марки ФП-25, на установке вертикального втягивания. После чего экспонировали полученный слой путем засвечивания фоторезиста в необходимых участках платины. Проявляли фоторозист в 0,8% растворе КОН марки о.с.ч. в течение 30-40 сек. После проявки промывали проточной водой до полного удаления щелочи и сушили, с последующим повторением задубливания. Температура повторного задубливания 140-150°С, а время - 1,5-2 ч.
Подготовка соединяющего материала. Исходные оксиды отжигали в муфельной печи до окончания убыли массы. Затем из отожженных оксидов готовили навески в нужном стехиометрическом соотношении, перетирали в агатовой ступке 1,5-2 часа и прессовали в таблетки. Эти таблетки на керамической подложке помещали печь для твердофазного синтеза (температура и время не указано). Каждые 20 часов синтеза, проводили промежуточное перетирание для гомогенизации. После окончания синтеза, соединение перетирали в агатовой ступке и помещали между слоями монокристаллических пластин в печь, в которой происходило плавление соединения. Температура нагрева выбиралась на несколько десятков градусов выше ликвидуса данного соединения. После процедуры наплавления, полученный материал шлифовали и полировали. Подобных слоев изготавливалось 5-6.
Способ 2. Формирование газочувствительного слоя на поверхности германоэвлитина. На поверхности монокристаллических подложек висмутсодержащих соединений при их обработке концентрированной ортофосфорной кислотой, образуется слой осадка одного и того же состава, соответствующего ортофосфату висмута. Использование слоя осадка в качестве сенсорного элемента гетероструктуры, возможен, лишь при активации его путем тех или иных примесей или модифицирования. Поэтому вначале проводили химическую обработку порошка висмутсодержащего оксида до полного превращения его в ортофосфат. Полученный порошок сушили на воздухе при комнатной температуре в течение 48 ч., после чего обрабатывали насыщенным раствором гептамолибдата аммония, затем сушили 1 ч. на воздухе и насыщали МФК. Затем образец выдерживали 72 часа на воздухе при комнатной температуре, после чего проводили отжиг при 300°С в течение 2-х часов.
Однако, при использовании данного способа не достигается:
1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду огромного количества технологических операций, но еще и очень длительным по времени;
2. использование в аналоге дополнительного оборудования, существенно усложняет и удорожает процесс получения гетероструктуры;
3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение создают существенный риск загрязнения конечного материала посторонними веществами.
Следует также отметить еще два способа синтеза гетероструктур, имеющие схожие с вышеперечисленными аналогами недостатки:
1. Nguyen Dang Phu, Luc Huy Hoang, Peng-Cheng Guo, Xiang-Bai Chen, Wu Ching Chou. Study of photocatalytic activities of Bi2WO6/BiVO4 nanocomposites;
2. A.G. Nunez-Briones, L.A. Garcia-Cerda, M.A. , B.A. Puente-Urbina, E. Mendoza-Mendoza. Synthesis, structural characterization and photocatalytic activity of Bi-based nanoparticles // DR ESMERALDA MENDOZA Orcid ID: 0000-0001-9927-1895.
Общий вывод по аналогам: указанные аналоги в большинстве своем требуют очень большого количества технологических операций с использованием дополнительного оборудования, а также весьма длительны по времени. Это влечет за собой большие затраты, сильно усложняет и удорожает получение гетероструктур.
Наиболее близким к заявляемому способу является прототип, описание которого приведено в работе [В.В. Борисова, Е.В. Миронова, Е.С. Брагина, И.А. Бондарь. Синтез и физические характеристики стекол в системе Bi2O3-SiO2-GeO2-MoO3, используемых в качестве элементов сенсорных гетероструктур // Евразийский Союз Ученых (ЕСУ) #12 (45), 2017| ХИМИЧЕСКИЕ НАУКИ] предложили твердофазный способ синтеза. В качестве исходных веществ для получения стекловидных образцов использовали Bi2O3 (ТУ 6-09-3558-78) и GeO2 (ТУ 6-09-1418-76) квалификации «ос.ч», SiO2 (ГОСТ 9428-73) квалификации «ч.д.а», МоО3 (ТУ 6-09-4471-77) квалификации «ч». Сначала, путем твердофазного синтеза оксидов висмута, кремния и германия были получены соединения со структурой эвлитина 2Bi2O3:3ЭО2 (где Э - Ge, Si). MoO3 вводили в виде соединения с Bi2O3 при соотношении компонентов 2:3. Процесс твердофазного синтеза для всех соединений проводили при температуре 750°С в течение 48 часов, что обеспечивало 95%-ный выход продуктов реакций. Из полученных соединений готовили шихту массой около 12 г, содержание компонентов в которой составляло: Bi2O3 - 80% масс., МоО3 - 3% масс., SiO2 - от 5% масс., до 11% масс., GeO2. - до 100% массы. Навески помещали в агатовую ступку и тщательно перемешивали в течение 15 минут для гомогенизации смеси. Готовую смесь переносили в корундовый тигель, который ставили в предварительно нагретую до температуры 500°С муфельную печь и выдерживали в течение 30 минут при данной температуре для улучшения распределения MoO3. Затем температуру в печи повышали до 1150°С, шихту плавили при указанной температуре и выдерживали в течение 2 часов, перемешивая каждые 30 минут после расплавления. После гомогенизации расплава производили закалку образцов в «холодный» металлический тигель (диаметр основания не менее 20 мм.). При этом получали образцы в форме диска диаметром не менее 20 мм и толщиной 2-3 мм. Для снятия внутренних напряжений и соответственно, улучшения прочностных характеристик синтезированные стекла отжигали в муфельной печи при температуре 350°С в течение 9 часов.
Однако, при использовании данного способа не достигается:
1. быстрое получение искомой фазы, т.к. указанный способ очень длителен по времени;
2. быстрое получение искомой фазы, т.к. указанный способ включает большое число последовательных технологических операций;
3. использование в синтезе корундового тигля, может привести к загрязнению получаемого материала.
Основная задача изобретения состоит в повышении эффективности процесса получения гетероструктур, а также снижения временных затрат на их получение.
Для достижения поставленной задачи, заявляемый «Способ получения регулируемой гетероструктуры в системе Bi2O3-SiO2» содержит следующую совокупность существенных признаков, сходных с прототипом:
1. использование в качестве одних из исходных реагентов чистых Bi2O3 и SiO2;
2. необходимость проведения термической обработки, для успешного синтеза.
По отношению к заявляемому способу указанный прототип имеет следующие отличительные признаки и недостатки:
1. невозможно быстрое получение искомой фазы, т.к. указанный способ очень длителен по времени;
2. невозможно быстрое получение искомой фазы, т.к. указанный способ включает большое число последовательных технологических операций;
3. В виду высокой активности оксида висмута, при нагревании он активно взаимодействует практически со всеми веществами кроме чистой платины и растворяет их. В расплавленном состоянии (выше 825°С) этот процесс идет наиболее интенсивно, поэтому если при твердофазном синтезе и тем более при плавлении данного оксида, использовать корундовый тигель вместо платинового, то это приведет к существенному загрязнению получаемого вещества материалом, из которого изготовлен сам тигель (т.е. корундом).
Между отличительными признаками и решаемой задачей существует следующая причинно-следственная связь.
Выбор граничных параметров температуры начала охлаждения расплава (1047°С±20°С - 1230±20°С) обусловлен высокотемпературными областями расплава, каждая из которых имеет свое, особенное строение. Известно, что на фазовой диаграмме системы Bi2O3 - SiO2 область расплава может быть разделена на 3 температурные зоны А, В и С (фиг. 1) [Каргин В.П. Жереб В.П., Скориков В.М. Стабильное и метастабильное равновесия в системе Bi2O3-SiO2// Журнал неорганической химии. 1991. Т. 36. №10. С. 2611-2616]. Однако, для данного стехиометрического состава (50% мол. Bi2O3 - 50% мол. SiO2), областей расплава будет всего две: «В» и «С» (фиг. 1). Нами было установлено, что из обеих зон, удается получить гетероструктуру . Однако, в виду особенностей и разницы строения расплава в этих зонах, режимы охлаждения для каждой из них будут различными. И сплавление исходных реагентов (1047°С±20°С - 1230±20°С) будет осуществляться исключительно в зоне «С». Это связано с тем, что в более низкой температурной зоне «В» - высокая вязкость расплава. Поэтому сплавление исходных реагентов в ней существенно затруднено и требует значительной по времени выдержки, что является нецелесообразным.
Нижний диапазон температур (1047°С±20°С) выбран согласно диаграмме (фиг. 1) и обозначает нижнюю границу С-зоны. Нагрев же выше верхнего диапазона температур (1230°С±20°С) возможен, но является нецелесообразным в виду более высоких энергетических затрат и более быстрого износа материала тигля.
Выбор граничных параметров выдержки при заданном интервале температур (не менее 15 минут), должен обеспечивать полное взаимное растворение исходных компонентов друг в друге.
Выбор граничных параметров охлаждения.
Вариант 1.
Охлаждение со скоростью 3-100°С/с. Данный режим обусловлен тем, что при перегреве расплава в температурную зону «С» (свыше 1047°С±20°С, фиг. 1), только при скорости охлаждения, сравнимой с охлаждением на воздухе, удается добиться получения гетероструктуры . При более же медленных скоростях охлаждения - расплав не стеклуется и получается не гетероструктура, а чистое кристаллическое соединение Bi2SiO5. При более же высоких скоростях охлаждения, расплав не успевает выровняться по своему составу (в данной зоне он имеет свойство расслаиваться и быть неоднородным) что может привести к реализации совершенного другого состава фаз. Поэтому для температурной зоны «С» (1047°С±20°С-1230±20°С), скорость охлаждения расплава должна быть не слишком большой, но и не слишком медленной, а именно: 3-100°С/сек.
Вариант 2.
Ступенчатое охлаждение. Расплав в тигле, не вынимая из печи, охлаждают со свободной скоростью до температуры зоны «В» (1020°С±20°С-1047±20°С) и выдерживают в ней не менее 15 минут. После чего ведут уже полное охлаждение со скоростью 3-1000°С/с. Данный скоростной интервал объясняется тем, что для зоны «В», в виду особенностей ее строения, нет опасности расслаивания, поэтому расплав можно охлаждать довольно быстро вплоть до закалки в воду (3-1000°С/сек). Но также избегать слишком низких скоростей охлаждения, дабы расплав полностью не перешел в кристаллическое состояние.
Таким образом, одной из важнейших особенностей предлагаемого способа является то, что мы можем создавать «регулируемые» гетероструктуры:
1. регулируя скорость охлаждения (в обеих температурных зонах), можно получать гетероструктуры с разным соотношением стекло/кристаллы;
2. регулируя температуру начала полного охлаждения («С» или «В» зона), можно получать гетероструктуры с разным соотношением стекло/кристаллы
3. это дает возможность легко и просто создавать материал с уже заданными технологическими свойствами, меняя как соотношение между самими кристаллическими фазами, так и соотношение «кристалл/стекло» с помощью простой термической обработки расплава.
4. температурные и скоростные условия можно комбинировать, для создания уникальных материалов.
Способ иллюстрируется графически, где:
Фиг. 1 - Температурные зоны 1 в области расплава на фазовой диаграмме стабильного равновесия 2 системы Bi2O3 - SiO2;
Фиг. 2 - Фазовая диаграмма метастабильных равновесий системы Bi2O3-SiO2, построенная по результатам охлаждения расплава от температур, лежащих в зоне С;
На Фиг. 3 - Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом, по варианту 1 (с большим соотношением кристаллической части к аморфной) общий вид, увеличение - 50 крат;
На Фиг. 4 - Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом по варианту 1, общий вид, увеличение - 500 крат;
На Фиг. 5 - Результаты Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом по варианту 2, общий вид, увеличение - 50 крат;
На фиг.6 - Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом по варианту 2, общий вид, увеличение - 200 крат;
На Фиг. 7 - Результаты рентгенофазового анализа образца гетероструктуры состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом;
На фиг. 8 - Результаты макроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом (с очень малым соотношением кристаллической части к аморфной - на поверхности основного массива стекла образована тончайшая пленка кристаллов), увеличение - 3,2 крат.
На фиг. 9 - Результаты макроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3 - SiO2), полученного заявляемым способом (с очень малым соотношением кристаллической части к аморфной - на поверхности основного массива стекла образована тончайшая пленка кристаллов), увеличение - 4,0 крат (на красном фоне).
Сущность изобретения поясняется диаграммой, а также результатами рентгенофазового, макро- и микроструктурного анализа.
Нами было установлено, что при сплавлении исходных реагентов в температурном интервале (1047°С±20°С - 1230±20°С), выдержке в нем не менее 15 минут и последующим охлаждении: со скоростью 3-100°С/сек (вариант 1); или со свободной скоростью до температуры зоны «В», выдержки в ней не менее 15 минут и уже полного охлаждения со скоростью 3-1000°С/с (вариант 2) - приводит к надежному формированию гетероструктуры . Это объясняется особенностями строения расплава в зонах «С» и «В» (фиг. 1). При охлаждении из С - зоны, где расплав имеет свойство расслаиваться, скорость охлаждения должна быть не слишком высокой (чтобы расплав успел гомогенизироваться и не привел к образованию нежелательных структур), но и не слишком низкой, чтобы полностью не утратить стекловидную часть получаемой гетероструктуры.
При охлаждении же из В - зоны, где проблемы расслаивания нет, расплав можно охлаждать с довольно высокими скоростями, но также стараться избегать слишком низких скоростей, чтобы полностью не утратить стекловидную часть получаемой гетероструктуры.
Полученные данные подтверждаются макро- и микроструктурным анализом (фиг. 3-4, 8-9), на котором ясно видно двухфазное строение полученного материала в виде двух пластин, одна из которых имеет ярко выраженное кристаллическое строение и состоит из ориентированных определенным образом пластинчатых блоков, а другая - состоит из цельнолитого желтого стекла (светлая часть на фиг. 3-4). Игольчатые блоки - это соединение - на микроструктуре, при охлаждении по первому способу, различим плохо, и присутствует в основном объеме фазы Bi2SiO5 в количестве не превышающем 5% (его на фиг. 3-4 не видно).
При охлаждении же по режиму 2 количество увеличивается и он проявляется на микроструктуре в виде многочисленных многогранных кристалликов, распложенных как в основном массиве стекла, так и на границе с игольчатой Bi2SiO5 (фиг. 5-6).
Существование именно трехфазной области, состоящей из аморфного материала и смеси двух кристаллических фаз без каких либо посторонних примесей и других соединений, подтверждает также рентгенофазовый анализ, приведенный на фиг. 7.
По результатам анализов, представленным на фиг. 3-9, можно сделать вывод о том, что решающую роль при быстром синтезе данной гетроструктуры играет скорость охлаждения расплава, а также температурная область расплава, из которой ведется охлаждение.
Заявляемый «Способ получения регулируемой гетероструктуры в системе Bi2O3-SiO2» может быть реализован с помощью следующих материальных объектов:
1. печь - нагревательное устройство с рабочей камерой, обеспечивающее нагревание материала до заданной температуры в интервале до 1230°С;
2. платиновый тигель.
Пример конкретного выполнения:
1. в качестве исходных компонентов берем порошки оксида висмута (Bi2O3) и диоксида кремния (SiO2) в соотношении 50:50 мол. %;
2. исходные реагенты помещаем в платиновый тигель и перемешиваем платиновым шпателем или металлической ложкой;
3. нагреваем смесь до 1200°С с выдержкой 1 час;
4. достаем тигель с расплавом из печи и остужаем его на воздухе.
Как показали результаты опытной проверки, при использовании заявляемого способа обеспечивается достижение следующих результатов:
1. получена двухслойная гетероструктура, состоящая из двух видов кристаллов и стекла, лишенная загрязнений и посторонних примесных фаз;
2. заявляемый способ требует намного меньше времени на синтез, чем все известные современные аналоги, приведенные выше, что существенно снижает не только временные, но также и экономические затраты на производство.
3. заявляемый способ не требует никакого дополнительного оборудования, только тигель и печь. Это существенно упрощает процесс синтеза и делает его экономически более выгодным;
4. заявляемый способ позволяет создавать уникальные «регулируемые» гетероструктуры с помощью простой термической обработки. Это дает возможность легко и просто создавать материал с уже заданными технологическими свойствами, меняя как соотношение между самими кристаллическими фазами, так и соотношение «кристалл/стекло» с помощью простой термической обработки расплава.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения гетероструктуры, стекло, обогащенное Si/δ* - BiO/стекло, обогащенное Bi, в системе BiO - SiO | 2018 |
|
RU2693062C1 |
СПОСОБ ПОЛУЧЕНИЯ САМОНАСТРАИВАЮЩЕГОСЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛИТЕЛЬНОЙ ДИМЕРИЗАЦИИ МЕТАНА В СИСТЕМЕ BiO- SiO | 2020 |
|
RU2753653C1 |
Способ получения соединения δ*-BiO в системе BiO-SiO | 2018 |
|
RU2707598C1 |
Способ получения силиката висмута BiSiO | 2017 |
|
RU2654968C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЕРМАНАТА ВИСМУТА BiGeO | 2017 |
|
RU2636090C1 |
Способ получения германата-силиката висмута | 2020 |
|
RU2724760C1 |
Технология создания магнитоуправляемого мемристора на основе нанотрубок диоксида титана | 2021 |
|
RU2756135C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА МЕТАСТАБИЛЬНОГО КРИСТАЛЛИЧЕСКОГО СОЕДИНЕНЯИ BISIO | 1996 |
|
RU2115626C1 |
Способ получения силиката висмута BiSiO методом литья | 2018 |
|
RU2669677C1 |
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТА ВИСМУТА BiSiO МЕТОДОМ КРИСТАЛЛИЗАЦИИ В ТИГЛЕ | 2017 |
|
RU2665626C1 |
Изобретение относится к области химии и может быть использовано в качестве суперионного проводника с защитным слоем и фотокатализатора с регулируемой активностью и с защитным слоем. Способ получения регулируемой гетероструктуры Bi2O3+Bi2SiO5 включает предварительное механическое смешивание исходных порошков, помещение их в платиновый тигель, нагрев до 1047°С±20°С - 1230±20°С, выдерживание не менее 15 мин с последующим охлаждением со скоростью 3-100°С/с (первый вариант) или охлаждением со свободной скоростью, не вынимая из печи, до 1020°С±20°С - 1047±20°С, выдерживанием не менее 15 мин и охлаждением со скоростью 3-1000°С/с (второй вариант). Изобретение позволяет создавать двухслойные гетероструктуры (состоящие из двух видов кристаллов - -Bi2O3 и Bi2SiO5 и стекла) без посторонних примесных фаз и загрязнений с помощью простой термической обработки, что существенно снижает не только временные, но и экономические затраты на производство и обеспечивает возможность легко и просто создавать материал с уже заданными технологическими свойствами, меняя как соотношение между самими кристаллическими фазами, так и соотношение «кристалл/стекло». 2 н.п. ф-лы, 9 ил.
1. Способ получения регулируемой гетероструктуры -Bi2O3+Bi2SiO5, включающий предварительное механическое смешивание исходных порошков, отличающийся тем, что исходные компоненты - оксид висмута (Bi2O3) и оксид кремния (SiO2) - после быстрого механического смешивания помещают в платиновый тигель, нагревают до 1047°С±20°С - 1230±20°С, выдерживают не менее 15 мин, после чего охлаждают со скоростью 3-100°С/с.
2. Способ получения регулируемой гетероструктуры -Bi2O3+Bi2SiO5, включающий предварительное механическое смешивание исходных порошков, отличающийся тем, что исходные компоненты - оксид висмута (Bi2O3) и оксид кремния (SiO2) - после быстрого механического смешивания помещают в платиновый тигель, нагревают до 1047°С±20°С - 1230±20°С, выдерживают не менее 15 мин, после чего охлаждают со свободной скоростью не вынимая из печи до 1020°С±20°С - 1047±20°С, выдерживают не менее 15 мин и затем охлаждают со скоростью 3-1000°С/с.
LING ZHANG et al., Solar light photocatalysis using Bi2O3/Bi2SiO5 nanoheterostructures formed in mesoporous SiO2 microspheres, "CrystEngComm", 2013, vol.15, No.6, pp.10043-10048 | |||
Способ получения силиката висмута BiSiO | 2017 |
|
RU2654968C1 |
KUN-LE JIA et al., One-pot synthesis of bismuth silicate heterostructures with tunable morphology and excellent visible light photodegradation performances, "Journal of Colloid and Interface Science", 2017, vol | |||
Способ получения бумажной массы из стеблей хлопчатника | 1912 |
|
SU506A1 |
Гудок | 1921 |
|
SU255A1 |
Авторы
Даты
2019-06-11—Публикация
2018-10-18—Подача