УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА Российский патент 2019 года по МПК G01N21/65 G01J3/44 B82B1/00 

Описание патента на изобретение RU2696899C1

Изобретение относится к оптическим сенсорам и может быть использовано для аналитических целей, таких как детектирование различных веществ или иных наноразмерных объектов и определение концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света.

Комбинационное рассеяние света, усиленное поверхностью (SERS), проявляется в увеличении интенсивности спектральных линий (рамановского сигнала) на молекулах, адсорбированных на частицах или шероховатых поверхностях некоторых металлов (например, Ag, Au или Си) с нанометровыми размерами (10-100 нм) [1-3] и используется для детектирования различных веществ методом спектроскопии комбинационного рассеяния света.

Известно техническое решение, в котором предложена подложка для использования в спектроскопии комбинационного рассеяния, усиленного поверхностью, включающее области, периодически расположенные на поверхности подложки и состоящие из осажденных частиц золота [4]. Данная структура усиливает рамановский сигнал и технологически может хорошо воспроизводится с использованием технологии микроэлектроники. Однако она очень сложна в изготовлении и экономически затратна, так как требует использования трудоемкого процесса фотолитографии.

Известно другое техническое решение, в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, содержащая полупроводниковую подложку, сформированные на ней нитевидные кристаллы, покрытые пленкой SERS-чувствительного металла выбранного из группы, состоящей из серебра, золота, платины [5]. Однако недостатком такого рода подложки является неизбежно высокое поглощение падающего света а, следовательно, она менее чувствительна и может требовать использования более мощного лазера, что может приводить к деструкции исследуемого объекта.

Известно еще одно техническое решение, в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, содержащая собственно подложку и множество вертикальных удлиненных элементов, простирающихся от подложки, причем каждый элемент имеет наконечник из SERS-чувствительного металла, причем элементы располагаются на подложке с плотностью не менее 1×108 удлиненных элементов на см2 [6]. Однако недостатком такого рода подложки также является неизбежно высокое поглощение падающего света а, следовательно, она менее чувствительна. К тому же при размещении на ней исследуемого объекта элементы склонны к хаотическому слипанию, что неизбежно ведет к невоспроизводимости результатов измерений.

Наиболее близким техническим решением является «Возобновляемая подложка для детектирования поверхностно-усиленного рамановского рассеяния» по патенту России [7], в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, включающая твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, зеркальный слой, промежуточный слой оптически прозрачного диэлектрика, SERS-активный слой из наночастиц и пассивирующий слой оптически прозрачного диэлектрика поверх SERS-активного слоя из наночастиц. Главным недостатком данного технического решения является то, что SERS-активный слой из наночастиц состоит из определенного SERS-активного металла, например, серебра, который имеет плазмон на определенной частоте. Как результат высокое усиление рамановского сигнала в таком случае возможно, только при использовании лазеров с длиной волны, попадающей в определенный узкий диапазон. Это накладывает ограничения на номенклатуру веществ, которые могут быть изучены с использованием такой SERS-подложки, поскольку для изучения различных веществ длину волны лазера необходимо подбирать.

Задача изобретения - это увеличение чувствительности SERS-подложки и расширение номенклатуры изучаемых веществ благодаря расширению диапазона длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал.

Для достижения этого предлагается устройство усиления комбинационного рассеяния света, включающее твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя и отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем.

Таким образом, отличительными признаками изобретения является то, что устройство содержит второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя и отделенного от первого SERS-активного слоя вторым оптическим прозрачным слоем. Часто в рамановской спектроскопии при исследовании веществ наблюдается явление флуоресценции, которое перекрывает рамановский сигнал, делая невозможным увидеть пики от исследуемого вещества и, тем самым, его идентифицировать. В этом случае используют лазер с другой длиной волны, для которой данного явления не наблюдается. SERS эффект связан с плазмонным резонансом SERS-активного слоя, выполненного из массива наночастиц, поэтому чтобы иметь хорошее усиление рамановского сигнала, в зависимости от материала этого слоя также необходимо использовать лазер с соответствующей ему длиной волны. Было обнаружено, что при использовании двух SERS-активных слоев из двух разных материалов, разделенных вторым оптическим прозрачным слоем, причем второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя, прозрачность такой структуры остается высокой, а рамановский сигнал на такой подложке дополнительно увеличивается, при использовании и лазера с длиной волны близкой плазмонному резонансу первого SERS-активного слоя, и лазера с длиной волны близкой плазмонному резонансу второго SERS-активного слоя. Таким образом, диапазон длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал расширяется.

Такая совокупность отличительных признаков позволяет устранить недостатки способа-прототипа и достичь указанного технического результата, а именно, данное устройство позволяет дополнительно усиливать рамановский сигнал, а, следовательно, повысить чувствительность SERS-подложки, и расширить диапазон длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал, а, следовательно, расширить номенклатуру изучаемых веществ.

Целесообразно, чтобы отражающий слой выполнить из SERS-активного материала, поскольку экспериментально было обнаружено, что взаимодействие плазмонных поляритонов, локализованных вблизи наночастиц, с отражающим слоем позволяет, по меньшей мере, на порядок усилить SERS-сигнал от исследуемого вещества. Таким образом, отличительным признаком изобретения является то, что отражающий слой выполняется из SERS-активного материала.

Известно, что наиболее сильным эффектом усиления рамановского сигнала обладают металлы Ag, Cu, Au или сплавы на их основе, поэтому желательно чтобы, отражающий слой был из Ag, Au, Cu или сплавов на их основе. Таким образом, отличительным признаком изобретения является то, что материал отражающего слоя выбирается из группы Ag, Au, Си или сплавов на их основе.

Предпочтительно, чтобы толщина первого оптически прозрачного слоя не превышала 30 нм, что обусловлено ограниченным дальнодействием плазмонных поляритонов, локализованных вблизи наночастиц. Известно, что на расстоянии свыше 30 нм от SERS-чувствительного материала эффект усиления рамановского сигнала резко ослабевает.Таким образом, отличительным признаком изобретения является то, что толщина первого оптически прозрачного слоя не превышает 30 нм.

Возможно, чтобы толщина первого оптически прозрачного слоя была равна kλ/(2n), где λ - длина волны падающего излучения, n - показатель преломления материала оптически прозрачного слоя, k - натуральные числа, поскольку в этом случае достигается интерференционное сложение волны, отраженной от SERS-активного слоя, выполненного из массива наночастиц, и волны, отраженной от отражающего слоя, что позволяет усилить рамановский сигнал в несколько раз. Таким образом, отличительным признаком изобретения является то, что толщина первого оптически прозрачного слоя выбирается равной kλ/(2n).

Поскольку, как уже отмечалось, сильным эффектом усиления рамановского сигнала обладают металлы Ag, Cu, Au или сплавы на их основе, предпочтительно чтобы, SERS-активные слои, состоящие из массива наночастиц, выполнялись из материала, выбираемого из группы Ag, Au, Cu или сплавов на их основе. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои, состоящие из массива наночастиц, выполняются из материала, выбираемого из группы Ag, Au, Cu или сплавов на их основе.

Целесообразно, чтобы SERS-активные слои состояли из массива частиц со средним размером 10-100 нм, поскольку известно, что размер частиц влияет на положение плазмонного резонанса, а это позволяет настраивать подложку для использования в спектроскопии усиленного поверхностью комбинационного рассеяния под конкретное исследуемое вещество с целью обеспечения максимальной ее чувствительности. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои состоят из массива частиц со средним размером 10-100 нм.

Полезно, когда SERS-активные слои состоят из разных SERS-активных материалов, поскольку это расширяет возможности использования SERS-подложки для исследования различных веществ. Выявлено, что комбинирование этих материалов позволяет существенно расширить диапазон длин волн, в котором наблюдается рамановское усиление. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои состоят из разных SERS-активных материалов.

По упомянутой причине также полезно, когда массив частиц в SERS-активном слое состоит из частиц разных SERS-активных материалов. Таким образом, отличительным признаком изобретения является то, что массив частиц в SERS-активном слое состоит из частиц разных SERS-активных материалов.

Целесообразно, чтобы толщина второго оптически прозрачного слоя также не превышала 30 нм по той же причине резкого ослабления эффекта усиления рамановского сигнала, что обусловлено ограниченным дальнодействием плазмонных поляритонов, локализованных вблизи наночастиц. Таким образом, отличительным признаком изобретения является то, что толщина второго оптически прозрачного слоя не превышает 30 нм.

В некоторых случаях, когда второй SERS-активный слой состоит из легко подвергаемого коррозии материала, предпочтительно, он будет покрыт тонким оптически прозрачным защитным слоем, толщина которого не превышает 30 нм по той же указанной выше причине. Таким образом, отличительным признаком изобретения является то, что второй SERS-активный слой покрыт тонким оптически прозрачным защитным слоем, толщина которого не превышает 30 нм.

На фиг. 1 приведена предлагаемая подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света, где: 1 - исходная подложка; 2 - отражающий слой; 3 - первый оптически прозрачный слой; 4 - SERS-активный слой, состоящий из массива наночастиц; 5 - второй оптически прозрачный слой; 6 - второй SERS-активный слой, состоящий из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя.

На фиг.2 показаны графики, которые получены при длинах волн лазера 488 нм и 633 нм, характерных зависимостей интенсивности рамановского сигнала пленки аморфного углерода на обычной подложке 7, SERS-подложке 8, изготовленной в соответствие с прототипом, и предлагаемой SERS-подложке 9 со вторым SERS-активным слоем из серебряных наночастиц со средним размером 7 нм, отделенным вторым оптически прозрачным слоем от первого SERS-активного слоя из золотых наночастиц со средним размером 40 нм. Известно, что аморфный углерод слабо идентифицируется спектроскопией комбинационного рассеяния света. Как можно видеть на фиг. 2, на спектре от пленки аморфного углерода на обычной подложке 7 не удается разрешить хоть сколько-нибудь заметных пиков, в то же время на SERS-подложке 8, изготовленной в соответствие с прототипом, хорошо различимы D и G пики, характерные для данного материала. Но еще более заметное усиление рамановского сигнала (9) наблюдается на устройстве, выполненном в соответствие с предлагаемым техническим решением, причем, как можно видеть и при длине волны лазера 488 нм, и при длине волны 633 нм.

Проведенные патентные исследования показали, что совокупность признаков предлагаемого изобретения является новой, что доказывает новизну устройства усиления комбинационного рассеяния света. Кроме того, патентные исследования показали, что в научно-технических источниках отсутствуют данные, оказывающие влияние отличительных признаков заявляемого изобретения на достижение технического результата.

Пример 1. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную подложку монокристаллического кремния, на которой есть слой серебра толщиной 50 нм, слой SiO2 толщиной 20 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 20 нм.

Пример 2. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную стеклянную подложку, на которой есть слой серебра толщиной 200 нм, слой SiO2 толщиной 20 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц золота со средним размером 20 нм.

Пример 3. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную стеклянную подложку, на которой есть слой серебра толщиной 200 нм, слой SiO2 толщиной 130 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 20 нм.

Настоящее изобретение позволяет устранить недостатки способа-прототипа, обеспечивая дополнительное усиление рамановского сигнала, а, следовательно, повышение чувствительности SERS-подложки и расширение номенклатуры изучаемых веществ благодаря расширению диапазона длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал.

Источники информации:

1. М. Moskovits, Rev. Mod. Phys., 57 (1985) 783;

2. К. Kneipp, Н. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett., 76

(1996) 2444;

3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett., 78

(1997) 1667; S. Nie, S. R. Emory, Science, 275 (1997) 1102

4. Патент США 9013689

5. Патент РФ 2574176

6. Патент США 8767202

7. Патент РФ 2543691 - прототип

Похожие патенты RU2696899C1

название год авторы номер документа
Оптический сенсор с плазмонной структурой для определения химических веществ низких концентраций и способ его получения 2019
  • Зюбин Андрей Юрьевич
  • Матвеева Карина Игоревна
  • Самусев Илья Геннадьевич
  • Демин Максим Викторович
RU2720075C1
Способ получения усиленного сигнала комбинационного рассеяния света от молекул сывороточного альбумина человека в капле жидкости 2019
  • Зюбин Андрей Юрьевич
  • Константинова Елизавета Ивановна
  • Слежкин Василий Анатольевич
  • Матвеева Карина Игоревна
  • Самусев Илья Геннадьевич
  • Демин Максим Викторович
  • Брюханов Валерий Вениаминович
RU2708546C1
Планарный наноструктурированный сенсор на основе поверхностного плазмонного резонанса для усиления комбинационного рассеяния света тромбоцитов человека и способ его получения 2022
  • Зюбин Андрей Юрьевич
  • Рафальский Владимир Витальевич
  • Моисеева Екатерина Михайловна
  • Матвеева Карина Игоревна
  • Кон Игорь Игоревич
  • Демишкевич Елизавета Александровна
  • Кундалевич Анна Анатольевна
  • Евтифеев Денис Олегович
  • Ханкаев Артемий Александрович
  • Цибульникова Анна Владимировна
  • Самусев Илья Геннадьевич
  • Брюханов Валерий Вениаминович
RU2788479C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДЛОЖКИ С ЭКСПРЕССНЫМ САМОФОРМИРОВАНИЕМ НАНОЧАСТИЦ ДЛЯ ПОЛУЧЕНИЯ СПЕКТРОВ ГИГАНТСКОГО КОМБИНИРОВАННОГО РАССЕЯНИЯ СВЕТА 2023
  • Громов Дмитрий Геннадьевич
  • Новиков Денис Вадимович
  • Дубков Сергей Владимирович
  • Лебедев Егор Александрович
  • Волкова Лидия Сергеевна
  • Бондаренко Анна Витальевна
  • Савицкий Андрей Иванович
  • Кицюк Евгений Павлович
RU2804508C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДЛОЖКИ С ЭКСПРЕССНЫМ САМОФОРМИРОВАНИЕМ НАНОЧАСТИЦ ДЛЯ ПОЛУЧЕНИЯ СПЕКТРОВ ГИГАНТСКОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА 2023
  • Громов Дмитрий Геннадьевич
  • Лебедев Егор Александрович
  • Ширяев Максим Евгеньевич
  • Новиков Денис Вадимович
  • Дубков Сергей Владимирович
  • Савицкий Андрей Иванович
  • Кицюк Евгений Павлович
  • Гаврилов Сергей Александрович
RU2806842C1
КАРТРИДЖ ДЛЯ СБОРА И АНАЛИЗА МЕЛКОДИСПЕРСНЫХ ЧАСТИЦ 2022
  • Бедин Сергей Александрович
  • Ковалец Наталья Павловна
  • Кожина Елизавета Павловна
  • Разумовская Ирина Васильевна
RU2821797C2
Планарный оптический сенсор для идентификации составляющих химической структуры Балтийского янтаря и способ его получения 2022
  • Зюбин Андрей Юрьевич
  • Кундалевич Анна Анатольевна
  • Матвеева Карина Игоревна
  • Самусев Илья Геннадьевич
RU2797388C1
Способ изготовления подложек для спектроскопии гигантского комбинационного рассеяния 2022
  • Баршутина Мария Николаевна
  • Новиков Сергей
  • Волков Валентин Сергеевич
  • Арсенин Алексей Владимирович
RU2797004C1
СПОСОБ РЕГИСТРАЦИИ СПЕКТРОВ ГИГАНТСКОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА И ПРОТОЧНАЯ ЯЧЕЙКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2021
  • Соколов Павел Михайлович
  • Мочалов Константин Евгеньевич
  • Крюкова Ирина Сергеевна
  • Ракович Юрий Петрович
RU2765617C1
СПОСОБ ИЗГОТОВЛЕНИЯ SERS-АКТИВНОЙ ПОДЛОЖКИ 2022
  • Бедин Сергей Александрович
  • Кожина Елизавета Павловна
RU2787341C1

Иллюстрации к изобретению RU 2 696 899 C1

Реферат патента 2019 года УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного рассеяния света включает: твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем. Второй SERS-активный слой выполнен из массива наночастиц со средним размером, равным или меньше, чем у первого SERS-активного слоя. Технический результат изобретения заключается в повышении чувствительности SERS-подложки и расширении номенклатуры изучаемых веществ. 10 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 696 899 C1

1. Устройство усиления комбинационного рассеяния света, включающее твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, состоящий из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, отличающееся наличием второго SERS-активного слоя, состоящего из массива наночастиц со средним размером частиц, равным или меньше, чем у первого SERS-активного слоя, и отделенного от первого SERS-активного слоя вторым оптически прозрачным слоем.

2. Устройство по п.1, отличающееся тем, что отражающий слой выполняется из SERS-активного материала.

3. Устройство по п.2, отличающееся тем, что материал отражающего слоя выбирается из группы Ag, Au, Cu или сплавов на их основе.

4. Устройство по п.1, отличающееся тем, что толщина первого оптически прозрачного слоя не превышает 30 нм.

5. Устройство по п.1, отличающееся тем, что толщина первого оптически прозрачного слоя выбирается равной kλ/(2n), где λ - длина волны падающего излучения, n - показатель преломления материала оптически прозрачного слоя, k - нечетные натуральные числа.

6. Устройство по п.1, отличающееся тем, что SERS-активные слои, состоящие из массива наночастиц, выполняются из материала, выбираемого из группы Ag, Au, Cu или сплавов на их основе.

7. Устройство по п.1, отличающееся тем, что SERS-активные слои состоят из массива частиц со средним размером 10-100 нм.

8. Устройство по п.1, отличающееся тем, что SERS-активные слои состоят из разных SERS-активных материалов.

9. Устройство по п.1, отличающееся тем, что массив частиц в SERS-активном слое состоит из частиц разных SERS-активных материалов.

10. Устройство по п.1, отличающееся тем, что толщина второго оптически прозрачного слоя не превышает 30 нм.

11. Устройство по п.1, отличающееся тем, что второй SERS-активный слой покрыт тонким оптически прозрачным защитным слоем, толщина которого не превышает 30 нм.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696899C1

RU 2012141488 A, 10.04.2014
RU 2006144957 A, 27.06.2008
US 2011267608 A1, 03.11.2011
US 2014036262 A1, 06.02.2014.

RU 2 696 899 C1

Авторы

Громов Дмитрий Геннадьевич

Савицкий Андрей Иванович

Дубков Сергей Владимирович

Герасименко Александр Юрьевич

Кицюк Евгений Павлович

Шаман Юрий Петрович

Полохин Александр Александрович

Копылов Филипп Юрьевич

Секачева Марина Игоревна

Даты

2019-08-07Публикация

2018-08-29Подача