FIELD: chemistry.
SUBSTANCE: invention relates to combustion profiles of a coke furnace, as well as to methods and systems for optimization of operation and output of a coke plant. Method comprises: loading coal layer into chamber of horizontal coke furnace with heat recovery; creation of negative pressure in the furnace chamber for the thrust so that air is sucked into the furnace chamber through at least one air inlet located for arrangement of the furnace chamber in fluid communication with the environment of the horizontal coke furnace with heat recuperation. Then initiation of carbonization cycle of coal layer so that volatile substance is released from coal layer, mixed with air and at least partially burned inside furnace chamber, generating heat inside furnace chamber. Suction by negative pressure rod of volatile substance into at least one bottom channel located below furnace bottom, at that at least part of volatile substance burning inside bottom channel generates heat inside bottom channel, which is at least partially transmitted through under furnace to layer coal. Suction by means of thrust of negative pressure of exhaust gases from at least one bottom channel, measurement of temperature in furnace chamber and detection of multiple successive temperature changes during carbonization cycle. Further, negative pressure thrust is reduced by a plurality of consecutive separate flow reduction steps in response to detecting each of the plurality of successive temperature changes until, until the measured temperature reaches the peak temperature at which the negative pressure rod drops to the minimum value.
EFFECT: technical result consists in performance of coking with higher speed, which enables to use higher loads of coal.
27 cl, 15 dwg
Authors
Dates
2019-08-15—Published
2015-08-28—Filed