Противоточный рекуператор для высокоэффективного теплообмена. Областью преимущественного применения данного теплообменного аппарата по типу «труба(-ы) в трубе» является теплотехника, тепловые двигатели и т.п.
Из уровня техники известны рекуперативные теплообменные аппараты (ТОА) такого же типа в которых, движущиеся в противоположных направлениях вдоль друг друга, горячий (Г.Т.) и холодный (Х.Т.) теплоносители разделены между собой теплопроводящей поверхностью, и отличительно характеризуются: температурой Х.Т. на выходе выше температуры на выходе Г.Т., меньшей площадью теплообменника и более высоким температурным напором, чем при прямоточной схеме (- прототип). См. «Теплотехника», 2012 г., Москва, Изд. ц. «Академия»
Задача, решаемая предлагаемым изобретением - это создание более высокоэффективной теплопередачи от Г.Т. к Х.Т.
Техническим результатом является получение температуры Х.Т. в выходном коллекторе приближающейся к температуре Г.Т. во входном коллекторе, и наоборот для температуры Г.Т. в выходном коллекторе, приближающейся к температуре Х.Т. во входном, с любым, наперед заданным, приближением (точностью) - одновременно (при необходимом соотношении масс Г.Т. и Х.Т., находящихся в тепловом контакте). Технический результат достигается тем, что в противоточном рекуператоре для высокоэффективного теплообмена, состоящем из внутренней(-их) и внешней труб произвольной формы сечения, находящихся одна(-и) в другой, а также подводящих и отводящих коллекторов к ним для горячего и холодного теплоносителей, трубы состоят из теплопроводящих трубных отрезков и расположенных между ними теплоизолирующих прокладок, препятствующих распространению тепла вдоль труб, причем его внешняя труба либо дополнительно теплоизолирована снаружи, либо полностью выполнена из теплоизолирующего материала.
На чертежах изображены: Фиг. 1 - труба в трубе, Фиг. 2 - теплоизолирующая прокладка, Фиг. 3 - Трубы в трубе.
Рекуператор представляет собой теплообменник, состоящий из внутренней(-их) 1 и внешней 2 труб, находящихся одна(-и) в другой, а так же подводящих и отводящих коллекторов к ним, для противоположно движущихся горячего и холодного теплоносителей.
Труба в данном контексте есть понятие условное: в поперечном ее сечении может быть любая замкнутая кривая, которая может меняться вдоль трубы - как по форме, так и по величине охватываемой площади. Очевидно, что трубы должны быть одинаковой длины, и каждая из них на одном из своих концов соединена: либо с входным, либо с выходным коллектором, в зависимости от того, пропускником какого теплоносителя она является - и наоборот на другом конце. Необходимо различать внутреннюю(-ие) 1 и внешнюю 2 трубы рекуператора. Внутренняя труба разделяет между собой противоточные Х.Т. и Г.Т. Внешняя же труба (либо ее части, сами по себе) разделяет (-ют) какой либо теплоноситель (Х.Т. или Г.Т.) и окружающую среду. Причиной, препятствующей прототипу достигать заявленный технический результат, является хорошая теплопроводность труб вдоль движения теплоносителей - при ее безусловной необходимости в поперечном (кроме внешней трубы) направлении, так как это противодействует созданию и поддержанию градиента температур на концах труб. Поэтому отличительными признаками для заявляемого изобретения является то, что трубы рекуператора от входного до выходного коллектора разделены на части (отрезки, в общем случае, поперечного отреза от прототипных монотруб) с теплоизолирующими прокладками 3 между ними, препятствующих распространению тепла по составу (металлу) труб по их длине, и способных на основе отрезков и прокладок формировать теплообменные камеры, обладающих любой степенью тепловой обособленности друг от друга, а так же то что внешняя труба дополнительно теплоизолируется снаружи, либо полностью выполняется из теплоизолирующего материала. При установившемся процессе теплопередачи, каждый отрезок трубы будет обладать своей постоянной (средней) температурой, отличающейся от температуры соседнего. Необходимым условием получения техрезультата будет то, что соотношение масс теплоносителей, одновременно проходящих через рекуператор должно быть обратно пропорционально соотношению их теплоемкостей. Регулируя соотношение теплопередающей поверхности к объему теплоносителя, время его контакта с ней, его скорость, величину и количество отрезков и размер проходов 4 в прокладках, достигаем необходимой полноты теплопередачи, которая в конечном счете определяется количеством отрезков. Передающаяся от Г.Т. к Х.Т. энергия стремится с ростом количества отрезков к превышающей Uпр=Uг.т.-Uх.т.=m1(2)*C1(2)*(T2-T1), где m1(2) - массы теплоносителей проходящих через рекуператор за один и тот же промежуток времени, C1(2) - их теплоемкости, Т1 и Т2 - температуры Х.Т. и Г.Т. на входе, m1*C1=m2*C2 - необходимое условие.
Создавая проходы 4 необходимых размеров в перпендикулярно расположенных теплоизолирующих прокладках и формируя тем самым череду, последовательно располагающихся и равного объема, теплообменных камер, состоящих из двух подобъемов для теплоносителей - создаем процесс теплообмена со ступенчатым (либо плавным), от камеры к камере, уменьшением температуры для Г.Т. и ее увеличением для Х.Т., при их дискретно-импульсном (либо плавном) движении. При импульсном движении в проходах необходимо устанавливать «обратные» клапана из теплоизолирующего материала. Применяя несколько, параллельно работающих в импульсном режиме и со сдвигом в фазе, рекуператоров, несложно добиться непрерывности (плавности) движения теплоносителей в более общих, подводящем и отводящем, руслах. При непрерывном режиме работы рекуператора роль теплозапирающего клапана между камерами будет играть теплоноситель в проходах, скорость которого должна быть больше, скорости существенного значимого распространения тепла в нем (скорости в проходах и камерах соотносятся обратно пропорционально площадям их сечений). Очевидно (и согласно закона Фурье), с уменьшением разницы температур между Г.Т. и Х.Т. в выходном и входном коллекторах будет возрастать время выравнивания температур теплоносителей в камерах, т.е. в них необходимо увеличивать теплообменную поверхность. Согласно расчетам разница температур между участками (отрезками) равна (Т2-Т1)/(n+1), где n - их количество во внутренней трубе. Передающаяся энергия равна Uп.р.*n/(n+1). При n=99 передается 99%, а при n=999-99,9% всей превышающей (Uг.т. - Uг.т.) тепловой энергии от Г.Т. к Х.Т. и т.д.
название | год | авторы | номер документа |
---|---|---|---|
Сердечник рекуперативного противоточного теплообменника (варианты) | 2016 |
|
RU2632739C1 |
УСТРОЙСТВО ДЛЯ АККУМУЛИРОВАНИЯ ХОЛОДА | 2011 |
|
RU2469245C1 |
Спирально-пластинчатый теплообменник | 2020 |
|
RU2750678C1 |
Вихревой теплообменный аппарат | 2023 |
|
RU2813402C1 |
Трубчатый рекуператор | 1981 |
|
SU1010405A1 |
МАТРИЧНЫЙ КЕРАМИЧЕСКИЙ ВОЗДУХОПОДОГРЕВАТЕЛЬ (ВП) | 2011 |
|
RU2484386C2 |
ВОЗДУХО-ВОЗДУШНЫЙ РЕКУПЕРАТОР | 2022 |
|
RU2788016C1 |
Дисковый теплообменник | 2020 |
|
RU2747651C1 |
СОЛНЕЧНАЯ ТЕПЛОЭЛЕКТРОСТАНЦИЯ С ВЛАГОКОНДЕНСИРУЮЩЕЙ УСТАНОВКОЙ | 2007 |
|
RU2373428C2 |
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ И НАКОПЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ | 1999 |
|
RU2174655C2 |
Изобретение относится к области теплотехники и может быть использовано в рекуперативных теплообменных аппаратах. В противоточном рекуператоре для высокоэффективного теплообмена, состоящем из внутренней(-их) и внешней труб произвольной формы сечения, находящихся одна(-и) в другой, а также подводящих и отводящих коллекторов к ним для горячего и холодного теплоносителей, трубы состоят из теплопроводящих трубных отрезков и расположенных между ними теплоизолирующих прокладок, препятствующих распространению тепла вдоль труб, причем его внешняя труба либо дополнительно теплоизолирована снаружи, либо полностью выполнена из теплоизолирующего материала. Технический результат – повышение эффективности теплопередачи. 3 ил.
Противоточный рекуператор для высокоэффективного теплообмена, состоящий из внутренней(-их) и внешней труб произвольной формы сечения, находящихся одна(-и) в другой, а также подводящих и отводящих коллекторов к ним для горячего и холодного теплоносителей, отличающийся тем, что его трубы состоят из теплопроводящих трубных отрезков и расположенных между ними теплоизолирующих прокладок, препятствующих распространению тепла вдоль труб, причем его внешняя труба либо дополнительно теплоизолирована снаружи, либо полностью выполнена из теплоизолирующего материала.
Приспособление для устройства снежноколейных дорог | 1930 |
|
SU22703A1 |
Устранено для непрерывного разваривания измельченного крахмал и инулин содержащего сырья | 1936 |
|
SU52851A1 |
Трубчатый рекуператор | 1979 |
|
SU919461A1 |
FR 2953918 B1, 10.02.2012 | |||
WO 2015104634 A1, 16.07.2015. |
Авторы
Даты
2019-08-16—Публикация
2015-11-25—Подача