Способ приготовления катализатора и способ гидрокрекинга вакуумного гайзоля с использованием этого катализатора Российский патент 2019 года по МПК B01J37/00 B01J29/70 B01J23/85 C10G47/16 

Описание патента на изобретение RU2697711C1

Изобретение относится к способу приготовления катализатора процесса гидрокрекинга, который дает повышенные количества продукта, кипящего в диапазоне средних дистиллятов, и использует катализатор, включающий Бета цеолит, в качестве активного компонента крекинга.

Гидрокрекинг является основным процессом конверсии, используемым на многих нефтеперегонных заводах во всем мире для снижения молекулярного веса нефтяного сырья и превращения тяжелого вакуумного газойля (ВГО - углеводороды с точкой кипения между 340°С и 565°С) в более ценные продукты, такие как моторное топливо, дизельное топливо и смазки. Гидрокрекинг также приводит к другим полезным результатам, таким как удаление серы и азота из сырья гидродесульфуризацией. Полная схема процесса гидрокрекинга определяет степень превращения и селективность, достигаемые в процессе гидрокрекинга, эти два критерия производительности всегда связаны также с характеристиками катализатора гидрокрекинга, используемого в процессе.

В последние годы в мировой нефтеперерабатывающей промышленности наблюдаются следующие тенденции:

вовлечение в переработку более тяжелых нефтяных фракций, содержащих большее количество гетероатомных примесей;

увеличение глубины переработки нефти с целью повышения выхода светлых нефтепродуктов, связанное с ростом относительной доли деструктивных процессов;

ужесточение экологических требований к качеству топлив, что делает необходимым их глубокую очистку и облагораживание.

При использовании современных технологий доля вакуумного газойля (ВГО) при переработке нефти может достигать 70%. Необходимость увеличения глубины переработки тяжелых нефтяных фракций в легкие моторные топлива стимулировала более широкое внедрение процессов гидроочистки и гидрокрекинга вакуумного газойля, проводимых в условиях повышенных температур и давлений водорода, различающихся используемыми катализаторами, условиями проведения процессов и распределением продуктов реакции.

Эффективность процесса гидрокрекинга ВГО зависит от природы используемого катализатора, который в свою очередь, должен обладать бифункциональностью: с одной стороны, быть активным в реакциях гидрирования-дегидрирования, с другой - в реакциях крекинга. Активность в реакциях гидрирования-дегидрирования обеспечивается металлами, а активность в реакциях крекинга обусловлена присутствием кислотных центров носителя. Обычно используемыми носителями являются аморфные оксиды, такие как алюмосиликаты, кристаллический цеолит в сочетании с оксидом алюминия или смесь кристаллического цеолита и аморфных оксидов (А. С. Иванова, Е. В. Корнеева, Г. А. Бухтиярова, А. Л. Нуждин, А. А. Буднева, И. П. Просвирин, В. И. Зайковский, А. С. Носков. Гидрокрекинг вакуумного газойля в присутствии нанесенных Ni-W-катализаторов. Кинетика и катализ. - 2011. - Т. 52, № 3).

Начальная классификация катализаторов гидрокрекинга осуществляется на основе природы преобладающего в катализаторе компонента крекинга. Эта классификация делит катализаторы гидрокрекинга на катализаторы на основе аморфного алюмосиликатного компонента крекинга, и на основе цеолитных компонентов крекинга, таких как Y цеолит. Катализаторы гидрокрекинга обычно включают цеолитный компонент и носитель, такой как оксид алюминия или алюмосиликат, а также металлический компонент гидрирования.

Гидрокрекинг является хорошо известным процессом, в котором используются различные цеолитные катализаторы. Хотя они могут быть эффективными в обеспечении выхода дистиллята, имеющего одно или несколько свойств, соответствующих предполагаемому использованию дистиллята, эти катализаторы, как правило, страдают недостатком - не обеспечивают высокого выхода продукта, имеющего хорошие характеристики текучести при низких температурах, особенно пониженную температуру застывания и вязкость.

Известен способ одновременного гидрокрекинга и депарафинизации тяжелой нефти с использованием катализатора, включающего цеолит Бета плюс второй цеолит, такой как Х или Y цеолит (Пат. США № 4757041A, 1988, C10G47/16). Известны также способы переработки, в которых тяжелая нефть одновременно подвергается гидрокрекингу и депарафинизации с использованием катализатора, на основе цеолита Бета с компонентом гидрирования (Пат. США № 5128024A, 1992, C10G11/05 и Пат. США № 5284573).

Описаны характеристики Бета цеолита (Пат. США № 3308069, 1967, B01J29/7007). Цеолит Бета, который используется в способе, раскрытом в описании, имеет мольное отношение SiO2:Al2O3 менее 9-30:1.

Установлено, что катализатор гидрокрекинга, содержащий Бета цеолит с такими характеристиками, обладает хорошей селективностью и активностью. Бета цеолит может быть обработан паром. Катализатор содержит металлический компонент гидрирования, такой как никель, кобальт, вольфрам, молибден или любую их комбинацию.

Широко известна гидротермальная обработка цеолитов для использования в катализаторах гидрокрекинга. Однако обработка паром является относительно грубой процедурой. Для любого данного цеолита обработка паром снижает кислотность цеолита. Когда используется цеолит, обработанный паром, в качестве катализатора гидрокрекинга, очевидный результат в том, что общий выход дистиллята повышается, но снижается активность катализатора. Этот очевидный компромисс между общим выходом дистиллята и активностью нужно учитывать, и это является пределом улучшения, достижимого обработкой паром цеолита.

Наиболее близким к предлагаемому изобретению является осуществление процесса гидрокрекинга, раскрытого в описании (Пат. США №5284573), которое включает контакт потока сырья, содержащего углеводороды с точкой кипения между 340°С и 565°С, с катализатором, содержащим компонент гидрирования и Бета цеолит.

Способ включает контактирование цеолита с кислотой, предпочтительно минеральной кислотой, такой как соляная кислота. Деалюминирование легко протекает при температуре окружающей среды и умеренно повышенных температурах и происходит с минимальными потерями кристалличности с образованием высококремнистых форм цеолита Бета. Цеолит используется в водородной форме. Реакция деалюминирования легко протекает при температурах окружающей среды, но можно использовать слегка повышенные температуры, например, до 100°C.

После экстракционной обработки продукт промывают водой без примесей, предпочтительно дистиллированной водой, до тех пор, пока очищенная промывная вода не будет иметь рН в приблизительном диапазоне от 5 до 8. При необходимости цеолит может быть обработан паром перед кислотной экстракцией, чтобы увеличить соотношение диоксид кремния: оксид алюминия и сделать цеолит более устойчивым к кислоте. Обработка паром может также способствовать повышению легкости удаления кислоты и обеспечению сохранения кристалличности во время процедуры экстракции.

Компонент гидрирования включает металлический компонент, такой как никель, кобальт, вольфрам, молибден или их любую комбинацию. Предпочтительным составом металлического компонента гидрирования является никель и вольфрам с весовым количеством металлического вольфрама, в два-три раза превышающим количество никеля. Количество никеля или кобальта предпочтительно составляет 2-8 мас.%. конечного катализатора. Количество вольфрама или молибдена предпочтительно составляет 8-22 мас.%. конечного катализатора. Общее количество компонента гидрирования составляет 10-30 мас.%.

Способ гидрокрекинга и депарафинизации тяжелого углеводородного вакуумного газойля, имеющего начальную температуру кипения выше 340°С, включает контактирование сырья с катализатором, содержащим Бета-цеолит в качестве кислотного компонента и компонент гидрирования при температуре от 230 до 500°C и в присутствии газообразного водорода при общем давлении от 500 до 20000 кПа, объемной скорости от 0,1 до 10 LHSV и скорости циркуляции водорода от 10 до 3500.

Основными недостатками указанного способа, взятого за прототип, является недостаточно высокий выход средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания из-за значительного уменьшения общей кислотности цеолита Бета и одновременно высокой доли процесса крекинга, а также невысокий выход изомеризованных парафинов.

Изобретение решает задачу создания улучшенного процесса гидрокрекинга вакуумного газойля с получением средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания.

Технический результат - увеличение выхода средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания при гидрокрекинге вакуумного газойля за счет уменьшения доли реакций крекинга, а также увеличение доли реакций изомеризации.

Задача решается предлагаемым способом приготовления катализатора.

В качестве кислотного компонента катализатора используют Бета цеолит, предварительно обработанный растворами органических или неорганических кислот, гранулированный с оксидом алюминия в качестве связующего. Существенным отличительным признаком предлагаемого способа от прототипа является то, что указанный кислотный компонент, используемый для производства пористого катализатора, предварительно подвергается обработке раствором хелатирующего агента, выбранного из ряда: сульфосалициловая кислота, ЭДТА (этилендиаминтетрауксусная кислота), сульфобензойная кислота, а затем перегретым водяным паром при температуре выше 650°С в течение не менее 2 ч.

Предварительная обработка раствором хелатирующего агента, выбранного из ряда: сульфосалициловая кислота, ЭДТА (этилендиаминтетрауксусная кислота), сульфобензойная кислота, а затем перегретым водяным паром при температуре выше 650°С в течение не менее 2 ч приводит:

во-первых, к уменьшению количества кислотных центров катализатора расположенных преимущественно на внешней поверхности кристаллов Бета цеолита ответственных за протекание процесса крекинга, практически не затрагивая кислотных центров в объеме кристаллов цеолита (селективное деалюминирование) и, как следствие, к увеличению выхода средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания;

во-вторых, к удалению активных центров коксообразования с внешней поверхности пористого катализатора и, как следствие, к увеличению длительности межрегенерационного пробега катализатора.

Задача решается также предлагаемым способом гидрокрекинга тяжелого вакуумного газойля, имеющего начальную температуру кипения выше 340°С, включающим контактирование сырья с катализатором, содержащим цеолит Бета в качестве кислотного компонента и компонент гидрирования, такой как никель и вольфрам, в качестве катализатора используют катализатор, приготовленный описанным выше способом при температуре от 230 до 500°С в присутствии газообразного водорода, при общем давлении от 500 до 20000 кПа, объемной скорости от 0,1 до 10 LHSV и скорости циркуляции водорода от 10 до 3500.

В процессе гидроокрекинга вакуумного газойля в присутствии указанного катализатора происходит превращение парафинов нормального строения с преимущественным образованием изомерных углеводородов, при этом образование легких углеводородов вследствие крекинга снижается.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Пример 1 (прототип)

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 9. Указанный цеолит в Н-форме подвергают деалюминированию раствором 20% азотной кислоты при перемешивании и температуре 80-85оС в течение 2 ч. После экстракционной обработки продукт промывают дистиллированной водой, до тех пор, пока очищенная промывная вода не будет иметь рН в диапазоне от 5 до 8. Полученный цеолит гранулируют с 30% оксида алюминия в качестве связующего, прокаливают при температуре 550– 600°С и наносят гидрирующий компонент методом пропитки по влагоемкости из расчета содержания в катализаторе 17% W и 4% Ni. Пропиточный раствор готовят из метавольфрамата аммония, гидроксида никеля (II) и лимонной кислоты. После пропитки производится сушка гранул в течение 12 ч при температуре 120оС и прокалка в течение 4 ч при температуре 550оС. Перед использованием в процессе гидрокрекинга гранулы катализатора сульфидируют газофазно в потоке H2S в течение 2 ч при температуре 220°С, затем в течение 4 ч при температуре 400°С.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводят при температуре 300оС, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 1.

Таблица 1

Конверсия C16, % 26,6 Выход газа, мас. % 4,3 Выход С515, мас. % 14,3 Выход изо-C16, мас. % 8,0 Селективность образования C1-C4, % 16,2 Селективность образования C5-C15, % 53,7 Селективность образования изо-C16, % 30,1 Мольное отношение изо/н в C5-C15 3,2

Пример 2 (прототип)

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 18. Указанный цеолит в Н-форме подвергают деалюминированию раствором 20% азотной кислоты при перемешивании и температуре 80-85°С в течение 2 ч. После экстракционной обработки продукт промывают дистиллированной водой, до тех пор, пока очищенная промывная вода не будет иметь рН в диапазоне от 5 до 8. Полученный цеолит гранулируют с 30% оксида алюминия в качестве связующего, прокаливают при температуре 550 – 600°С и наносят гидрирующий компонент методом пропитки по влагоемкости из расчета содержания в катализаторе 17% W и 4% Ni. Пропиточный раствор готовят из метавольфрамата аммония, гидроксида никеля (II) и лимонной кислоты. После пропитки производится сушка гранул в течение 12 ч при температуре 120°С и прокалка в течение 4 ч при температуре 550оС. Перед использованием в процессе гидрокрекинга гранулы катализатора сульфидируют газофазно в потоке H2S в течение 2 ч при температуре 220°С, затем в течение 4 ч при температуре 400°С.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводят при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 2.

Таблица 2

Конверсия C16, % 22,5 Выход газа, мас. % 3,7 Выход С515, мас. % 11,6 Выход изо-C16, мас. % 7,2 Селективность образования C1-C4, % 16,4 Селективность образования C5-C15, % 51,6 Селективность образования изо-C16, % 32,0 Мольное отношение изо/н в C5-C15 3,2

Пример 3

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 9. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором сульфосалициловой кислоты при перемешивании и температуре 90-95°С в течение 2 ч. После экстракционной обработки продукт промывают дистиллированной водой, до тех пор, пока очищенная промывная вода не будет иметь рН в диапазоне от 5 до 8. Полученный цеолит гранулируют с 30% оксида алюминия в качестве связующего. После грануляции производится сушка гранул в течение 12 ч при температуре 120°С и обработка перегретым водяным паром в течение 2 ч при температуре 550°С. На полученные гранулы наносят гидрирующий компонент методом пропитки по влагоемкости из расчета содержания в катализаторе 17% W и 4% Ni. Пропиточный раствор готовят из метавольфрамата аммония, гидроксида никеля (II) и лимонной кислоты. После пропитки производится сушка гранул в течение 12 ч при температуре 120°С и прокаливание при температуре 550 – 600°С. Перед использованием в процессе гидрокрекинга гранулы катализатора сульфидируют газофазно в потоке H2S в течение 2 ч при температуре 220°С, затем в течение 4 ч при температуре 400°С.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводят при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 3.

Таблица 3

Конверсия C16, % 27,8 Выход газа, мас. % 3,1 Выход С515, мас. % 13,9 Выход изо-C16, мас. % 10,8 Селективность образования C1-C4, % 11,1 Селективность образования C5-C15, % 50,0 Селективность образования изо-C16, % 38,9 Мольное отношение изо/н в C5-C15 4,0

Пример 4

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 18. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором сульфосалициловой кислоты при перемешивании и температуре 90-95°С в течение 2 ч. Остальные процедуры приготовления катализатора аналогичны примеру 3.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводится при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 4.

Таблица 4

Конверсия C16, % 26,8 Выход газа, мас. % 3,0 Выход С515, мас. % 13,2 Выход изо-C16, мас. % 10,6 Селективность образования C1-C4, % 11,2 Селективность образования C5-C15, % 49,3 Селективность образования изо-C16, % 39,5 Мольное отношение изо/н в C5-C15 4,1

Пример 5

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 9. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором ЭДТА (этилендиаминтетрауксусная кислота) при перемешивании и температуре 90-95°С в течение 2 ч. Остальные процедуры приготовления катализатора аналогичны примеру 3.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводится при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 5.

Таблица 5

Конверсия C16, % 27,1 Выход газа, мас. % 3,3 Выход С515, мас. % 13,8 Выход изо-C16, мас. % 10,0 Селективность образования C1-C4, % 12,2 Селективность образования C5-C15, % 50,9 Селективность образования изо-C16, % 36,9 Мольное отношение изо/н в C5-C15 4,1

Пример 6

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 18. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором ЭДТА (этилендиаминтетрауксусная кислота) при перемешивании и температуре 90-95°С в течение 2 ч. Остальные процедуры приготовления катализатора аналогичны примеру 3.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводится при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 6.

Таблица 6

Конверсия C16, % 25,9 Выход газа, мас. % 3,1 Выход С515, мас. % 13,2 Выход изо-C16, мас. % 9,6 Селективность образования C1-C4, % 12,0 Селективность образования C5-C15, % 51,0 Селективность образования изо-C16, % 37,0 Мольное отношение изо/н в C5-C15 4,0

Пример 7

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 9. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором сульфобензойной кислоты при перемешивании и температуре 90-95°С в течение 2 ч. Остальные процедуры приготовления катализатора аналогичны примеру 3.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводится при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 7.

Таблица 7

Конверсия C16, % 26,8 Выход газа, мас. % 3,4 Выход С515, мас. % 14,0 Выход изо-C16, мас. % 9,4 Селективность образования C1-C4, % 12,7 Селективность образования C5-C15, % 52,2 Селективность образования изо-C16, % 35,1 Мольное отношение изо/н в C5-C15 4,0

Пример 8

Для приготовления катализатора гидрокрекинга используют цеолит Бета, который имеет мольное отношение SiO2:Al2O3 равное 18. Указанный цеолит в Н-форме подвергают селективному деалюминированию 10% раствором сульфобензойной кислоты при перемешивании и температуре 90-95°С в течение 2 ч. Остальные процедуры приготовления катализатора аналогичны примеру 3.

Загрузка катализатора в реактор составляет 2 г (фракция 0,25-0,5 мм), катализатор перемешан с карбидом кремния до 4 мл. В качестве сырья используют гексадекан с добавкой диметилдисульфида (эквивалентно 200 ppm серы). Процесс гидрокрекинга проводится при температуре 300°С, давлении 40 бар, массовой скорости подачи сырья 4 ч-1 и соотношении водород/сырьё 300 м33.

Полученные результаты приведены в таблице 8.

Таблица 8

Конверсия C16, % 26,0 Выход газа, мас. % 3,1 Выход С515, мас. % 13,6 Выход изо-C16, мас. % 9,3 Селективность образования C1-C4, % 11,9 Селективность образования C5-C15, % 52,3 Селективность образования изо-C16, % 35,8 Мольное отношение изо/н в C5-C15 4,0

Похожие патенты RU2697711C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРОКРЕКИНГА, СОДЕРЖАЩИЙ БЕТА И Y ЦЕОЛИТЫ, И СПОСОБ ЕГО ПРИМЕНЕНИЯ В ПРОИЗВОДСТВЕ РЕАКТИВНОГО ТОПЛИВА ИЛИ ДИСТИЛЛЯТА 2006
  • Ванг Ли
RU2383584C2
КАТАЛИЗАТОР, СОДЕРЖАЩИЙ ПО МЕНЬШЕЙ МЕРЕ ОДИН ЦЕОЛИТ NU-86, ПО МЕНЬШЕЙ МЕРЕ ОДИН ЦЕОЛИТ USY И ПОРИСТУЮ НЕОРГАНИЧЕСКУЮ МАТРИЦУ, И СПОСОБ ГИДРОКОНВЕРСИИ УГЛЕВОДОРОДНОГО СЫРЬЯ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 2012
  • Бондюэлль Одрэ
  • Гийон Эмманюэлль
  • Руа-Оберже Магали
RU2640585C2
КАТАЛИЗАТОР ГИДРОКРЕКИНГА 2010
  • Домокос Ласзло
  • Оувехенд Корнелис
RU2540071C2
Способ приготовления катализатора гидрокрекинга углеводородного сырья 2017
  • Дик Павел Петрович
  • Перейма Василий Юрьевич
  • Корякина Галина Ивановна
  • Надеина Ксения Александровна
  • Казаков Максим Олегович
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2662234C1
КОМПОЗИЦИЯ КАТАЛИЗАТОРА ГИДРОКРЕКИНГА 2005
  • Сторк Виллем Хартман Юрриан
  • Домокос Ласло
  • Йонгкинд Херманус
  • Ригутто Марчелло Стефано
  • Ван Ден Ворт Эстер Хиллегарда Карола
RU2387480C2
ПРОЦЕСС СЕЛЕКТИВНОГО ГИДРОКРЕКИНГА С ПРИМЕНЕНИЕМ БЕТА ЦЕОЛИТА 2007
  • Ванг Ли
RU2424276C2
КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ГИДРОКРЕКИНГА И СПОСОБ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДНОГО СЫРЬЯ В НИЗКОКИПЯЩИЕ МАТЕРИАЛЫ 2003
  • Крейтон Эдвард Джулиус
  • Оувехенд Корнелис
RU2338590C2
Катализатор гидрокрекинга углеводородного сырья 2017
  • Дик Павел Петрович
  • Перейма Василий Юрьевич
  • Корякина Галина Ивановна
  • Надеина Ксения Александровна
  • Казаков Максим Олегович
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2662239C1
КАТАЛИЗАТОР ГИДРОКРЕКИНГА, СОДЕРЖАЩИЙ БЕТА- И Y ЦЕОЛИТЫ, И СПОСОБ ЕГО ПРИМЕНЕНИЯ ДЛЯ ПОЛУЧЕНИЯ НАФТЫ 2006
  • Ванг Ли
RU2394066C2
Способ приготовления катализатора гидрокрекинга углеводородного сырья 2016
  • Дик Павел Петрович
  • Перейма Василий Юрьевич
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Надеина Ксения Александровна
  • Будуква Сергей Викторович
  • Носков Александр Степанович
  • Казаков Максим Олегович
RU2633965C1

Реферат патента 2019 года Способ приготовления катализатора и способ гидрокрекинга вакуумного гайзоля с использованием этого катализатора

Изобретение относится к способу приготовления катализатора процесса гидрокрекинга, который дает повышенные количества продукта, кипящего в диапазоне средних дистиллятов, и использует катализатор, включающий Бета цеолит, в качестве активного компонента крекинга. Описан способ приготовления пористого катализатора гидрокрекинга тяжелого вакуумного газойля на основе цеолита Бета с мольным отношением SiO2:Al2O3 9-30:1, включающий контактирование цеолита Бета с кислотой, для переведения цеолита в водородную форму и частичного деалюминирования, обработку паром перед кислотной экстракцией, нанесение компонента гидрирования, такого как никель и вольфрам, цеолит Бета дополнительно подвергают обработке раствором хелатирующего агента, выбранного из ряда: сульфосалициловая кислота, этилендиаминтетрауксусная кислота ЭДТА, сульфобензойная кислота, а затем перегретым водяным паром при температуре выше 550°С в течение не менее 2 ч. Гидрокрекинг тяжелого вакуумного газойля, имеющего начальную температуру кипения выше 340°С, осуществляют контактированием сырья с катализатором, приготовленным описанным выше способом, при температуре от 230 до 500°С в присутствии газообразного водорода при общем давлении от 500 до 20000 кПа, объемной скорости от 0,1 до 10 LHSV. Технический результат - увеличение выхода средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания. 2 н.п. ф-лы, 8 табл., 8 пр.

Формула изобретения RU 2 697 711 C1

1. Способ приготовления пористого катализатора гидрокрекинга тяжелого вакуумного газойля на основе цеолита Бета с мольным отношением SiO2:Al2O3 9-30:1, включающий контактирование цеолита Бета с кислотой, для переведения цеолита в водородную форму и частичного деалюминирования, обработку паром перед кислотной экстракцией, нанесение компонента гидрирования, такого как никель и вольфрам, отличающийся тем, что цеолит Бета дополнительно подвергают обработке раствором хелатирующего агента, выбранного из ряда: сульфосалициловая кислота, этилендиаминтетрауксусная кислота ЭДТА, сульфобензойная кислота, а затем перегретым водяным паром при температуре выше 550°С в течение не менее 2 ч.

2. Способ гидрокрекинга тяжелого вакуумного газойля, имеющего начальную температуру кипения выше 340°С, включающий контактирование сырья с катализатором, содержащим цеолит Бета в качестве кислотного компонента и компонент гидрирования, такой как никель и вольфрам, отличающийся тем, что в качестве катализатора используют катализатор, приготовленный по п. 1, способ осуществляют при температуре от 230 до 500°С в присутствии газообразного водорода при общем давлении от 500 до 20000 кПа, объемной скорости от 0,1 до 10 LHSV.

Документы, цитированные в отчете о поиске Патент 2019 года RU2697711C1

КАТАЛИЗАТОР ГИДРОКРЕКИНГА, СОДЕРЖАЩИЙ БЕТА И Y ЦЕОЛИТЫ, И СПОСОБ ЕГО ПРИМЕНЕНИЯ В ПРОИЗВОДСТВЕ РЕАКТИВНОГО ТОПЛИВА ИЛИ ДИСТИЛЛЯТА 2006
  • Ванг Ли
RU2383584C2
US 5284573 A1, 08.02.1994
СПОСОБ СИНТЕЗА ЦЕОЛИТА БЕТА С ИСПОЛЬЗОВАНИЕМ ДИЭТИЛЕНТРИАМИНА 2005
  • Бройнингер Маркус
RU2378197C2
WO 2012137132 A1, 11.10.2012
US 5128024 A1, 07.07.1992
US 20080011647 A1, 17.01.2008.

RU 2 697 711 C1

Авторы

Ечевский Геннадий Викторович

Коденев Евгений Геннадьевич

Бухтиярова Марина Валерьевна

Даты

2019-08-19Публикация

2019-02-13Подача