Изобретение относится к области получения защитного покрытия, предохраняющего от воздействия агрессивных сред, поверхности деталей, проточной части турбин турбонасосных агрегатов жидкостных ракетных двигателей (ЖРД), выполненных из никелевых сплавов и имеющих сложную конфигурацию.
Вопрос надежности ЖРД с дожиганием окислительного генераторного газа в значительной степени связан с решением проблемы стойкости к возгоранию конструктивных элементов проточной части турбины, в высокотемпературной среде газообразного окислителя. Данная проблема решается за счет использования различных защитных покрытий.
Известен способ вакуумного ионно-плазменного нанесения толстослойного (до 300 мкм) никелевого покрытия, являющегося стойким к окислению и возгоранию в кислородосодержащей среде (патент РФ №2192501, 2000 г.). Напыленное и отожженное покрытие после охлаждения до комнатной температуры подвергали термической обработке - диффузионному отжигу - в вакуумной печи при температуре 1000-1050°С и разрежением не ниже 1⋅10-3 мм рт.ст. Данный способ позволяет получить достаточно плотное и прочное покрытие, обладающее высокой адгезией.
Однако полученное никелевое покрытие имеет недостаточную устойчивость к эрозионному воздействию частиц, инициирующих зажигание, содержащихся в окислительном генераторном газе. В результате чего происходил унос никелевого покрытия этими частицами и возгорание основного металла в среде высокотемпературного окислительного генераторного газа, обогащенного кислородом.
Известен способ нанесения на никелевый слой металлокерамического покрытия, устойчивого к эрозионному воздействию (патент США №6090191, 1999 г.). Металлокерамическое покрытие на никелевый слой наносится путем окунания детали в шликер, содержащий смесь его компонентов в воде. Полученный слой подвергается термической обработке путем сушки в потоке горячего воздуха до полного удаления влаги с труднодоступных мест наружной и внутренней поверхностей детали. Далее высушенную деталь помещают в контейнер, заполняют его аргоном и обжигают металлокерамическое покрытие в вакуумной печи при температуре 1000-1050°С. Охлаждение контейнера осуществляется с печью до комнатной температуры.
Однако при нанесении шликера на поверхность никелевого покрытия присутствующая в нем влага проникает в поры этого покрытия и в процессе нагрева не успевает испариться полностью. В результате в микропорах развивается высокое давление паров воды, приводящее к вспучиванию некоторых участков никелевого слоя и, как следствие, выходу детали в брак.
Известно двухслойное покрытие, наносимое на лопатки турбин и включающее в себя связующий слой, содержащий NiCrAlY и теплозащитный слой, состоящий из оксидов ZrO2 - Y2O3 или ZrO2 - MgO (патент США №4055705, 1976 г. - прототип).
Связующее покрытие, содержащее NiCrAlY, наносится на поверхность лопаток турбин путем плазменного напыления. Поверх связующего покрытия плазменным напылением наносится теплозащитное покрытие, состоящее из оксидов ZrO2-Y2O3 или ZrO2-MgO.
Данное покрытие имеет высокую адгезию, низкую теплопроводность и обеспечивает надежную защиты лопаток турбин от воздействия высокотемпературных газов.
Однако данное покрытие имеет недостаточную устойчивость к эрозионному воздействию частиц, содержащихся в высокотемпературном газе и инициирующих зажигание.
Задачей изобретения является создание способа получения покрытия на поверхности деталей, выполненных из никелевых сплавов и имеющих сложную конфигурацию, обеспечивающего их надежную защиту от возгорания в среде высокотемпературного газообразного окислителя, содержащего частицы, инициирующие зажигание.
Решение указанной задачи достигается тем, что в способе получения на поверхности детали из никелевого сплава защитного покрытия, состоящего из оксидов легирующих элементов никелевого сплава проводят горячее изостатическое прессование (ГИП) детали при давлении 150 МПа, при температуре 1190°С и времени выдержки 3 часа в среде аргона с 0,002% объемной доли кислорода, при этом парциальное давление кислорода устанавливают ниже давления диссоциации оксида никеля и выше давления диссоциации упомянутых оксидов легирующих элементов, после чего проводят старение при температуре 900°С и времени выдержки 16 часов и охлаждение на воздухе.
Технический результат состоит в обеспечении надежной защиты от возгорания деталей, выполненных из никелевого сплавов, в среде высокотемпературного кислородосодержащего генераторного газа и стойкости к коррозионному воздействию частиц, инициирующих возгорание.
Пример осуществления предложенного способа.
Предложенным способом было получено защитное покрытие на поверхности образцов лопаток статора турбины турбонасосного агрегата ЖРД. Образцы лопаток были изготовлены из жаропрочного сплава на никелевой основе ЭП648 (32-35% Сr, 0,5-1,1% Аl, 0,5-1,1% Ti, 0,5-1,1% Nb, 2,3-3,3% Mo, 4,3-5,3% W, ≤ 0,1% С, Ni - основа).
Образцы лопаток помещали в закрытую емкость, в которую подавался аргон, содержащий 0,002% объемной доли кислорода. Далее проводили процесс ГИП при давлении 150 МПа, температуре 1190°С и времени выдержки 3 часа.
После чего была проведена термическая обработка образцов лопаток в камерной печи по режиму: старение при температуре 900°С и времени выдержки 16 часов и охлаждение на воздухе.
Использование предложенного технического решения позволит получить покрытие, обеспечивающее надежную защиту деталей, выполненных из никелевых сплавов и имеющих сложную конфигурацию, от возгорания в среде высокотемпературного окислителя, содержащего частицы инициирующие зажигание.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛОКЕРАМИЧЕСКОГО ПОКРЫТИЯ | 1999 |
|
RU2159386C1 |
Металлокерамическое покрытие | 2018 |
|
RU2712679C1 |
ГАЗОВЫЙ ТРАКТ ЖРД | 2015 |
|
RU2579296C1 |
ПОРОШКОВАЯ ШИХТА И СПОСОБ ПОЛУЧЕНИЯ ИЗ НЕЕ ЗАЩИТНОГО МЕТАЛЛОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИЗДЕЛИЯХ ИЗ ДИСПЕРСИОННО-ТВЕРДЕЮЩИХ НИКЕЛЕВЫХ СПЛАВОВ | 1994 |
|
RU2078849C1 |
РАБОЧЕЕ КОЛЕСО ОСЕВОЙ ГАЗОВОЙ ТУРБИНЫ ДЛЯ КИСЛОРОДНО-КЕРОСИНОВОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 2004 |
|
RU2272912C2 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ | 2009 |
|
RU2410475C2 |
СПОСОБ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ ЛОПАТОК ДВИГАТЕЛЕЙ И ТУРБИН | 2021 |
|
RU2772538C1 |
СПОСОБ НАНЕСЕНИЯ КОМБИНИРОВАННОГО ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКИ ТУРБИН ГТД | 2020 |
|
RU2755131C1 |
СПОСОБ ВОССТАНОВИТЕЛЬНОГО РЕМОНТА ДЕТАЛЕЙ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ | 2007 |
|
RU2346799C2 |
СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ ОТЛИВОК ТУРБИННЫХ ЛОПАТОК ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ | 2014 |
|
RU2556178C1 |
Изобретение относится к области получения защитного покрытия, предохраняющего от воздействия агрессивных сред поверхности деталей проточной части турбин турбонасосных агрегатов жидкостных ракетных двигателей (ЖРД), выполненных из никелевых сплавов и имеющих сложную конфигурацию. Способ получения на поверхности детали из никелевого сплава защитного покрытия, состоящего из оксидов легирующих элементов никелевого сплава, включает проведение горячего изостатического прессования (ГИП) детали при давлении 150 МПа, при температуре 1190°С и времени выдержки 3 часа в среде аргона с 0,002% объемной доли кислорода. Парциальное давление кислорода устанавливают ниже давления диссоциации оксида никеля и выше давления диссоциации упомянутых оксидов легирующих элементов. Затем проводят старение при температуре 900°С и времени выдержки 16 часов и охлаждение на воздухе. Обеспечивается надежная защита от возгорания деталей в среде высокотемпературного кислородсодержащего генераторного газа и стойкость к коррозионному воздействию частиц, инициирующих возгорание. 1 пр.
Способ получения на поверхности детали из никелевого сплава защитного покрытия, состоящего из оксидов легирующих элементов никелевого сплава, характеризующийся тем, что проводят горячее изостатическое прессование (ГИП) детали при давлении 150 МПа, при температуре 1190°С и времени выдержки 3 часа в среде аргона с 0,002% объемной доли кислорода, при этом парциальное давление кислорода устанавливают ниже давления диссоциации оксида никеля и выше давления диссоциации упомянутых оксидов легирующих элементов, после чего проводят старение при температуре 900°С и времени выдержки 16 часов и охлаждение на воздухе.
US 4055705 A1, 25.10.1977 | |||
СПОСОБ НАНЕСЕНИЯ КЕРАМИЧЕСКОГО СЛОЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ | 2015 |
|
RU2600783C1 |
СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ ОТЛИВОК ТУРБИННЫХ ЛОПАТОК ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ | 2014 |
|
RU2556178C1 |
US 6090191 A1, 18.07.2000. |
Даты
2019-08-22—Публикация
2018-07-31—Подача