Способ пеленгации и широкополосный пеленгатор для его осуществления Российский патент 2019 года по МПК G01S3/02 

Описание патента на изобретение RU2699079C1

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство.

Известен амплитудный способ пеленгации (US 5541608 G01S 5/04, 30.07.1996 г. US 2427029, 10.04.1942 г.). Недостатком амплитудного способа пеленгации является то, что он не позволяет получить высокой точности пеленгации в широком диапазоне углов.

Известен фазовый способ пеленгации, в котором для достижения высокой точности требуется большое количество баз и каналов в приемном устройстве (US 5541608 G01S 5/04, 30.07.1996 г., US 2427029, 10.04.1942 г.).

Недостатком фазового способа пеленгации является то, что он не позволяет получить высокой точности пеленгации в широком диапазоне частот.

Возможно комплексирование (объединение) этих способов и достижение при этом высокой точности в широком диапазоне углов при небольшом количестве баз и каналов и, следовательно, при минимальных массогабаритных соотношениях радиопеленгатора. В патенте US 6061022, G01S 5/04, 09.05.2000 г. описано устройство, реализующее амплитудно-фазовый способ пеленгации.

Недостатком этого способа пеленгации является то, что он не позволяет получить высокой точности пеленгации в широком диапазоне частот.

Наиболее близким к предлагаемому является способ фазовой пеленгации (Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. М., из-во «Советское радио»., 1970, 392 стр. (стр. 6-7, 20-23)), в котором сигнал от цели принимается приемной антенной, а сдвиг фаз между сигналами на выходе парциальных антенн меняется в зависимости от направления отклонения цели относительно равносигнального направления. Этот сигнал непосредственно используется для управления положением антенной системы в процессе пеленгования или в процессе автоматического сопровождения цели. Качество пеленгующих свойств системы определяется крутизной пеленгационной характеристики. Для идеального пеленгатора изменение сдвига фазы в пределах ±90 градусов относительно равносигнального направления должно происходить с максимально возможной крутизной.

Недостатком представленного решения является то, что для высокой точности определения углового положения цели необходима реализация высокой крутизны пеленгационной характеристики антенной системы, для чего требуется высокая степень идентичности парциальных диаграмм пеленгующей антенны недостижимой в широкой полосе частот при использовании двух антенных систем, объединенных в один пеленгатор.

Задачей изобретения является повышение точности пеленгации, расширение частотного диапазона, повышение помехоустойчивости работы пеленгатора.

Поставленная задача достигается тем, что предлагается:

1. Способ пеленгации в процессе обзора пространства, включающий излучение и прием волны от цели, определение сдвига фаз между этими волнами, преобразование сдвига фазы в управляющий сигнал пропорциональный угловому положению цели в каждом положении луча антенны радиолокационной станции, отличающийся тем, что излучается линейно-поляризованная волна с вектором электрического поля, лежащим в плоскости пеленгации, проходящая через пластину из диэлектрического материала, расположенную под углом Брюстера относительно волны, приходящей от цели, для электрического вектора, лежащего в плоскости падения, а сдвиг фазы определяется между волной от цели, прошедшей через пластину из диэлектрического материала и волной, отраженной от нее.

2. Широкополосный пеленгатор, содержащий генератор, соединенный через коммутатор, с приемо-предающей антенной, расположенные на платформе, вращающейся в плоскости пеленгации, с приводом и датчиком угла поворота, измеритель сдвига фазы между сигналами с выхода антенн, соединенный с вычислителем угла положения цели, отличающийся тем, что в центре платформы установлена пластина из диэлектрического материала под углом Брюстера относительно волны, излучаемой линейно-поляризованной приемо-передающей антенной, причем ее плоскость поляризации ориентирована так, что вектор электрического поля антенны лежит в плоскости пеленгации, совпадающей с плоскостью падения падающей волны от цели на пластину из диэлектрического материала, а линейно-поляризованная приемная антенна, принимающая отраженную волну от пластины, установлена на платформе неподвижно относительно пластины под удвоенным углом Брюстера относительно падающей волны от цели.

Авторы установили, что при отражении плоской линейно-поляризованной электромагнитной волны с вектором электрического поля, лежащим в плоскости падения, от диэлектрической пластины угловая зависимость сдвига фазы между падающей и отраженной волнами в области угла падения близким к углу Брюстера составляет 180 градусов (±90 градусов), а угловое положение точки «нулевой» фазы для электрически тонкой пластины не зависит от частоты падающего поля. Эта угловая зависимость сдвига фазы соответствует пеленгационной зависимости для искусственно создаваемых антенных пеленгаторов.

На фиг. 1 показана угловая зависимость сдвига фазы между отраженной и падающей волнами при падении плоской волны на пластину из кварцевой керамики с диэлектрической проницаемостью (ε) ε=3,4 вблизи угла Брюстера при различных величинах потерь в материале. Из фиг. 1 видно, что в зависимости от величины потерь в материале реализуются различные величины градиента изменения сдвига фазы пеленгационной характеристики, которые можно выбирать в зависимости от разрешения по углу и практических условий реализации пеленгатора.

На фиг. 2 показана угловая зависимость сдвига фазы между отраженной и падающей волнами при падении плоской волны на пластину из плавленого кварца с ε=3,81 без потерь вблизи угла Брюстера при различных величинах рабочих частот в диапазоне от 1 до 30 ГГц для толщины пластины равной одной тридцатой длины волны на 10 ГГц. Из фиг. 2 видно, что формируется пеленгационная характеристика, на основе которой создается широкополосный пеленгатор.

Источником угловой информации в данном способе является угловая зависимость сдвига фазы отраженной волны от пластины из диэлектрического материала вблизи угла Брюстера.

Угловая информация извлекается в процессе измерения сдвига фазы между волнами, отраженными от цели: падающей или прошедшей через пластину и отраженной от пластины.

Выполняются три постулата условий моноимпульсной радиолокации о формировании пеленгатора.

Угловая информация извлекается в виде отношения и не зависит от абсолютного уровня амплитуд принятых сигналов.

Измеряемое значение сдвига фазы при переходе от положительного к отрицательному приходу волны изменяется на обратное, так как угловая зависимость сдвига фазы симметрична относительно равносигнального направления.

Угловая зависимость сдвига фазы, как пеленгационная характеристика угломерной системы, является нечетной действительной функцией угла прихода волны относительно равносигнального направления, совпадающего с углом Брюстера.

Отраженная волна используется, как разностный канал обычного пеленгатора, для управления положением антенной системы в процессе пеленгования или в процессе автоматического сопровождения.

Волна, принятая приемо-передающей антенной, соответствует суммарному каналу обычного пеленгатора и используется не только в качестве опорного канала, но и для обнаружения цели, а также для измерения дальности до цели и ее скорости.

На фиг. 3 представлен широкополосный пеленгатор. На платформе 1, вращающейся в плоскости пеленгации, с генератором 2 установлена линейно-поляризованная приемо-передающая антенна 3 с вектором электрического поля, лежащим в плоскости пеленгации. В центре платформы перпендикулярно плоскости пеленга, расположена пластина из диэлектрического материала 4, а приемная линейно-поляризованная антенна 5 с вектором электрического поля, лежащим в плоскости пеленгации, и принимающая отраженную волну от пластины из диэлектрического материала, установлена на платформе неподвижно относительно пластины под удвоенным углом Брюстера относительно падающей волны от цели. При обнаружении детектором 6 волны от цели, происходит уточнение положения цели по сдвигу фазы пеленгатора. Волны от цели через коммутатор 7 и с выхода приемной антенны 5 подаются на измеритель сдвига фазы 8 с выхода которого сигнал пропорциональный сдвигу фазы попадает в вычислитель угла положения цели, выполненный на основе процессора 9, в котором с учетом данных об угловом положении платформы, поступающих с датчика углового положения платформы 10, определяется угловое положение на цель. Вращение платформы осуществляется управляемым приводом 11, а при сопровождении цели положение платформы управляется по сигналу рассогласования, поступающему с вычислителя угла положения цели или процессора 9 U(α).

Из описания блок схемы устройства видно, что оно не содержит частотно-зависимых или резонансных устройств, ограничивающих работу пеленгатора по частоте, поэтому возможно применение такой схемы измерения для любого частотного диапазона, включая световой.

На фиг. 4 представлена блок-схема платформы с геометрическим угловым взаимным расположением элементов конструкции пеленгатора. Пластина из диэлектрического материала устанавливается в центре платформы и располагается под углом α относительно начальной оси ОХ. Цель условно ориентирована под углом β относительно оси ОХ. При наблюдении цели приемо-передающая антенна А1 неподвижно закрепленная под углом Брюстера к нормали относительно пластины и под углом γ3=α+270-αБр относительно оси ОХ, а приемная антенна А2 также закреплена неподвижно относительно пластины и принимает сигнал цели, отраженный от пластины под углом Брюстера и расположена под углом γ2=α+90+αБр. При повороте платформы направление антенны А1 на цель происходит тогда, когда углы ориентации антенн равны:

а угол направления на цель равен β=α+90-αБр1.

При повороте платформы точка пересечения направления от антенны А1 на цель с пластиной может отходить от центра платформы, но авторы установили, что вблизи направления пеленгации на цель и при значительном расстоянии от центра платформы до цели, это отклонение незначительно и не может повлиять на точность углового определения положения цели.

При появлении волны отраженной от цели на вход измерителя сдвига фазы 8 поступают волны от цели: прошедшей волны и отраженной от пластины 4. По изменению сдвига фазы между этими волнами уточняется направление на цель.

Изменения сдвига фазы отраженной волны в области угла Брюстера для пластины толщиной d=3 мм из кварцевого стекла с диэлектрической проницаемостью ε=3,81 и проницаемостью воздуха εв=1,00058, равного αБр=62,8665 угл. град, на частоте F=10 ГГц для различных значений потерь материала представлены на фиг. 5.

В таблице 1 определены крутизны для каждой из угловых зависимостей изменения сдвига фазы фиг. 3 (S, (фаз. град./угл. град.)), для которых исходя из разрешения по сдвигу фазы в Δϕ=2 град, для различных значений тангенса угла диэлектрических потерь материала при значениях дальности RR, рассчитана разрешающая способность м для частоты F=10 ГГц.

Из таблицы 1 видно, что с уменьшением диэлектрических потерь материала, из которого изготовлена пластина, увеличивается крутизна фазовой характеристики пеленгатора и растет его разрешающая способность. Для повышения точности определения углового положения цели выбирается диэлектрический материал с минимальными потерями, то есть с минимальным тангенсом угла диэлектрических потерь, для которого реализуется максимальная крутизна угловой зависимости сдвига фазы отраженной волны, как пеленгационной характеристики.

Изменения сдвига фазы отраженной волны в области угла Брюстера для пластины толщиной d=3 мм из кварцевого стекла с диэлектрической проницаемостью ε=3,81 и проницаемостью воздуха εв=1,00058, равного αБр=62,8665 угл. град для потерь материала равного tgδ=0,00005 для различных частот представлены на фиг. 6.

Из фиг. 6 видно, что для различных частот падающей волны величина перепада фазовой характеристики отраженной волны в близи угла Брюстера неизменна.

В таблице 2 определены крутизны для каждой из угловых зависимостей изменения сдвига фазы фиг. 4 (S, (фаз. град./угл. град.)), фаза для угла Брюстера и электрическая толщина пластины в области угла Брюстера падающей волны для различных частот.

Из таблицы 2 видно, что крутизна фазовой характеристики в области угла Брюстера для различных частот изменяется незначительно, а фазы этих зависимостей для угла Брюстера с расчетной погрешностью совпадают с величиной электрической толщины, рассчитываемой по формуле:

где f - частота сигнала,

с - скорость света,

d - толщина пластины из диэлектрического материала,

ε - диэлектрическая проницаемость пластины из диэлектрического материала,

αБр - угол падения волны равный углу Брюстера для диэлектрической проницаемости ε пластины из диэлектрического материала.

Таким образом, способ пеленгации и широкополосное устройство, выполненное по предлагаемому техническому решению, позволяет повысить точность углового обнаружения цели при работе в широком диапазоне частот.

Похожие патенты RU2699079C1

название год авторы номер документа
Широкополосный пеленгатор 2023
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Забежайлов Максим Олегович
RU2811893C1
Способ пеленгации и устройство для его осуществления 2019
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Забежайлов Максим Олегович
RU2716273C1
ШИРОКОПОЛОСНАЯ СИСТЕМА "АНТЕННА-ОБТЕКАТЕЛЬ" 2012
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Ромашин Владимир Гаврилович
  • Трайковская Елена Игоревна
RU2513718C2
ШИРОКОПОЛОСНАЯ СИСТЕМА "АНТЕННА-ОБТЕКАТЕЛЬ" 2011
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Ромашин Владимир Гаврилович
  • Кулаковский Михаил Владимирович
RU2446520C1
Способ определения сверхвысокочастотных параметров материала в полосе частот и устройство для его осуществления 2018
  • Крылов Виталий Петрович
  • Чирков Роман Александрович
  • Забежайлов Максим Олегович
RU2688588C1
Способ измерения диэлектрических свойств материала и устройство для его осуществления 2017
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Минкин Виктор Александрович
RU2665593C1
Способ определения диэлектрической проницаемости материала 2019
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Чирков Роман Александрович
  • Миронов Роман Александрович
RU2713162C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ОБРАЗЦА МАТЕРИАЛА ПРИ ВОЗДЕЙСТВИИ ВНЕШНИХ ФАКТОРОВ 2011
  • Крылов Виталий Петрович
  • Ромашин Владимир Гаврилович
  • Кулаковский Михаил Владимирович
RU2453856C1
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПЛОСКОСЛОИСТЫХ ДИЭЛЕКТРИКОВ ЕСТЕСТВЕННОГО ПРОИСХОЖДЕНИЯ 2022
  • Линец Геннадий Иванович
  • Баженов Анатолий Вячеславович
  • Мельников Сергей Владимирович
  • Гривенная Наталья Владимировна
  • Малыгин Сергей Владимирович
  • Гончаров Владислав Дмитриевич
RU2790085C1
Пеленгационная система "антенна-обтекатель" 2021
  • Кулиш Виктор Георгиевич
  • Клакович Андрей Михайлович
  • Филатов Юрий Петрович
  • Минкин Виктор Александрович
  • Крылов Виталий Петрович
RU2772249C1

Иллюстрации к изобретению RU 2 699 079 C1

Реферат патента 2019 года Способ пеленгации и широкополосный пеленгатор для его осуществления

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Технический результат - повышение точности угловой пеленгации в широкой полосе частот. Указанный результат достигается за счет того, что способ пеленгации в процессе обзора пространства включает излучение и прием волны от цели, определение сдвига фаз между этими волнами, преобразование сдвига фазы в управляющий сигнал, пропорциональный угловому положению цели в каждом положении луча антенны радиолокационной станции, при этом излучается линейно-поляризованная волна с вектором электрического поля, лежащим в плоскости пеленгации, проходящая через пластину из диэлектрического материала, расположенную под углом Брюстера относительно волны, приходящей от цели, для электрического вектора, лежащего в плоскости падения, а сдвиг фазы определяется между волной от цели, прошедшей через пластину из диэлектрического материала, и волной, отраженной от нее. Широкополосный пеленгатор, реализующий способ, содержит генератор, соединенный через коммутатор с приемо-предающей антенной, расположенные на платформе, вращающейся в плоскости пеленгации, с приводом и датчиком угла поворота, измеритель сдвига фазы между сигналами с выхода антенн, соединенный с вычислителем угла положения цели, при этом в центре платформы установлена пластина из диэлектрического материала под углом Брюстера относительно волны, излучаемой линейно-поляризованной приемо-передающей антенной, причем ее плоскость поляризации ориентирована так, что вектор электрического поля антенны лежит в плоскости пеленгации, совпадающей с плоскостью падения падающей волны от цели на пластину из диэлектрического материала, а линейно-поляризованная приемная антенна, принимающая отраженную волну от пластины, установлена на платформе неподвижно относительно пластины под удвоенным углом Брюстера относительно падающей волны от цели. 2 н.п. ф-лы, 6 ил., 2 табл.

Формула изобретения RU 2 699 079 C1

1. Способ пеленгации в процессе обзора пространства, включающий излучение и прием волны от цели, определение сдвига фаз между этими волнами, преобразование сдвига фазы в управляющий сигнал, пропорциональный угловому положению цели в каждом положении луча антенны радиолокационной станции, отличающийся тем, что излучается линейно-поляризованная волна с вектором электрического поля, лежащим в плоскости пеленгации, проходящая через пластину из диэлектрического материала, расположенную под углом Брюстера относительно волны, приходящей от цели, для электрического вектора, лежащего в плоскости падения, а сдвиг фазы определяется между волной от цели, прошедшей через пластину из диэлектрического материала, и волной, отраженной от нее.

2. Широкополосный пеленгатор, содержащий генератор, соединенный через коммутатор с приемо-предающей антенной, расположенные на платформе, вращающейся в плоскости пеленгации, с приводом и датчиком угла поворота, измеритель сдвига фазы между сигналами с выхода антенн, соединенный с вычислителем угла положения цели, отличающийся тем, что в центре платформы установлена пластина из диэлектрического материала под углом Брюстера относительно волны, излучаемой линейно-поляризованной приемо-передающей антенной, причем ее плоскость поляризации ориентирована так, что вектор электрического поля антенны лежит в плоскости пеленгации, совпадающей с плоскостью падения падающей волны от цели на пластину из диэлектрического материала, а линейно-поляризованная приемная антенна, принимающая отраженную волну от пластины, установлена на платформе неподвижно относительно пластины под удвоенным углом Брюстера относительно падающей волны от цели.

Документы, цитированные в отчете о поиске Патент 2019 года RU2699079C1

ЛЕОНОВ А.И., ФОМИЧЕВ К.И
Моноимпульсная радиолокация
М.: изд
"Советское радио", 1970, с.6-7,20-23
ШИРОКОПОЛОСНАЯ СИСТЕМА "АНТЕННА-ОБТЕКАТЕЛЬ" 2011
  • Крылов Виталий Петрович
  • Подольхов Иван Васильевич
  • Ромашин Владимир Гаврилович
  • Кулаковский Михаил Владимирович
RU2446520C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ 2013
  • Березовский Владимир Александрович
  • Золотарев Илья Давыдович
  • Привалов Денис Дмитриевич
RU2532259C2
US 20130088395 A1, 11.04.2013
JP 2005295201 A, 20.10.2005
EP 2919031 A2, 16.09.2015
JP 2001324557 A, 22.11.2001.

RU 2 699 079 C1

Авторы

Крылов Виталий Петрович

Кулиш Виктор Георгиевич

Подольхов Иван Васильевич

Шадрин Александр Петрович

Даты

2019-09-03Публикация

2018-12-14Подача