Изобретение относится к бесконтактным методам определения теплофизических характеристик твердых тел, в частности коэффициента температуропроводности и теплопроводности. Изобретение может быть использовано для теплового неразрушающего контроля изделий в авиакосмической, машиностроительной и энергетической промышленности.
Известно устройство для определения температуропроводности твердого тела при нестационарном тепловом режиме (Патент RU №2502989, МПК G01N 25/18, 12.07.2012). Устройство содержит источники инфракрасного излучения, осуществляющие воздействия на переднюю лицевую поверхность твердого тела. Система термопреобразователей служит для регистрации температурного поля твердого тела в течение нестационарного теплового режима, определяемого расчетным способом. По экспериментальным данным строят одномерное нестационарное температурное поле твердого тела. По результатам построения температурного поля твердого тела в режиме нагрева и дифференциальному уравнению теплопроводности вычисляют коэффициент температуропроводности твердого тела.
Основным недостатком технического решения является невозможность измерения компонент тензора температуропроводности в направлениях, перпендикулярных основному потоку нагрева, контактный характер регистрации температурного поля при сравнительно большой постоянной времени (более долей секунды), что не позволяет применять его для измерений на тонких и высокотеплопроводных материалах, где тепловые процессы протекают в течение долей секунды.
Известно устройство для бесконтактного определения коэффициента температуропроводности твердых тел (Пат. РФ №2549549, МПК G01N 25/18, G01J 5/60, 2015). Устройство содержит плоский оптический нагреватель, перед которым расположена оптически непрозрачная маска в виде прямоугольных полос, и тепловизор. Плоский оптический нагреватель и тепловизор подключены к компьютеру. Устройство дополнительно содержит оптический объектив, расположенный между оптически непрозрачной маской и оптически непрозрачной шторкой с устройством управления, подключенным к компьютеру. Оптически непрозрачная шторка расположена между оптическим объективом и исследуемым объектом и выполнена с возможностью открытия и последующего перекрытия, сфокусированного оптическим объективом теплового излучения плоского оптического нагревателя.
Недостатками известного устройства являются:
- сложность конструкции системы нагрева, размещаемой на одной стороне объекта исследований и тепловизором, помещенным над противоположной стенкой объекта; большая продолжительность процесса тестирования из-за необходимости выведения нагревателя на рабочий режим и последующее экспонирование через управляемую компьютеров шторку; недостаточная точность определения температуропроводности и теплопроводности при разнотолщинности объекта исследований или при непараллельности нагревателя и стенки объекта.
Наиболее близким к заявляемому техническому решению является устройство для бесконтактного определения теплофизических свойств твердых тел, описанный в способе бесконтактного неразрушающего контроля тепло-физических свойств материалов (пат. RU 2251098, МПК G01N 25/18, опубл. 27.04.2005). Способ заключается в том, что измеряют двумя термоприемниками температуру в заданных точках поверхности образца и температуру окружающей среды. По полученным результатам определяют поправочный коэффициент. Затем воздействуют на поверхность образца неподвижным точечным источником тепла. В заданный момент времени измеряют двумя термоприемниками избыточные температуры нагреваемой поверхности в заданных точках. Продолжают нагрев и измеряют момент времени, когда температура более удаленного от пятна нагрева термоприемника увеличится на заданную величину. По измеренным величинам определяют коэффициенты температуропроводности и теплопроводности.
В известном устройстве измеряют в двух точках (в заявляемом - усредняют по радиусам), функцию ошибок считают линейной функцией, пятно нагрева считают бесконечно малым, т.е. известное устройство не обеспечивает необходимую точность измерений. Известное устройство является более сложным в реализации из-за погрешности при выполнении линейных измерений, требует для определения образцы больших размеров. Следует отметить сложность системы, основанной на применении двух термоприемников.
Техническим результатом предлагаемого изобретения является разработка простого устройства для экспресс-инспекции и определения ряда теплофизических свойств тестируемых материалов (в частности, коэффициенты температуро- и теплопроводности) путем создания нестационарного температурного поля, регистрируемого тепловизором на наружной поверхности исследуемого материала.
Технический результат достигается тем, что устройство для бесконтактного определения теплофизических свойств твердых тел - коэффициентов температуропроводности и теплопроводности содержит подключенные к компьютеру нагреватель и тепловизор, согласно изобретению, создается нестационарная тепловая картина внешним «точечным» источником энергии на площадке размером порядка 1 мм2, которая регистрируется на доступной поверхности тепловизором как система концентрических круговых изотерм.
Радиальная симметричность концентрических круговых изотерм может определяться их измерением в двух взаимно перпендикулярных направлениях.
«Точечный» источник нагрева может быть выполнен в виде предварительно разогретого до 100-150°С заостренного медного стержня, установленного с возможностью подвода к исследуемой поверхности.
Создание нестационарной тепловой картины внешним «точечным» источником энергии на площадке размером порядка 1 мм2, которая регистрируется на доступной поверхности тепловизором как система концентрических круговых изотерм обеспечивает возможность применения устройства для тестирования материалов с различными габаритами, различной толщины и теплофизическими свойствами.
Выполнение нагревателя в виде предварительно разогретого до 100-150°С заостренного медного стержня, установленного с возможностью подвода к исследуемой поверхности обеспечивает создание лабораторного устройства с минимальной стоимостью и габаритами.
Возможность определения радиальной симметричности концентрических круговых изотерм измерением в двух взаимно перпендикулярных направлениях позволяет получить дополнительную информацию об анизатропности тестируемого материала.
На представленных графических материалах изображено:
На фиг. 1 схематично изображено устройство для бесконтактного определения теплофизических свойств твердых тел, состоящее из источника локального нагрева - лазерного излучателя 1, тепловизора 2, используемого для регистрации теплового поля на объекте исследований 3, и компьютера 4, подключенного к излучателю 1 и тепловизору 2.
На фиг. 2 показана нестационарная тепловая картина в виде системы круговых изотерм.
На фиг. 3 представлено радиальное распределение температуры TR для фиксированного расстояния R, усредненное по углам от 0 до 360°, для разных времен нагрева t для одного из опытов.
В основе предлагаемого метода и аппаратной реализации лежал компьютерный анализ нестационарной тепловой картины, создаваемой внешним «точечным» источником энергии, локализованным на площадке размером порядка 1 мм2. Такой источник тепла создает в бездефектном контролируемом изделии радиально симметричную тепловую волну, которая регистрируется на доступной поверхности тепловизором как система концентрических круговых изотерм. Их положение во времени с высокой точностью может быть установлено путем усреднения информации с большого числа пикселей матрицы тепловизора, лежащих на одном и том же расстоянии от центра изображения пятна нагрева.
В эксперименте использовали металлическую пластину, выполненную из малоуглеродистой конструкционной стали Ст3 толщиной 3 мм. Изначально металлическая пластина находилась в тепловом равновесии с окружающей средой. В начальный момент времени наружную сторону стенки начинали нагревать локальным источником энергии. Тепловизионная камера регистрировала нестационарное тепловое поле с легкодоступной наружной стороны оболочки (фиг. 1). Нагрев создавали лазером мощностью 10 Вт с длиной волны 450 нм и регулируемой длительностью импульса или посредством контакта с предварительно разогретым до 100-150°С заостренным металлическим стержнем. Это позволяло осуществлять локальный перегрев металлической оболочки на несколько десятков °С (фиг. 2). Цифровое ИК-изображение наружной поверхности регистрировали тепловизионной системой FLIR A35sc. Камера имела матрицу 320×256 пикселей, угловое разрешение (Instantaneous Field of View - IFOV) 2,78 мрад, порог чувствительности ≈ 0,05 ОС (в диапазоне температур от - 20°С до +550°С) и частоту выводимых и сохраняемых кадров 60 Гц. В качестве входных данных для последующего анализа использовали разность тепловых полей, обозначаемая далее Т(х, у, t), в исследуемый момент времени t и при t=0.
Устройство работает следующим образом.
Оператор запускает программу для задания параметров бесконтактного определения ТФС:
для ПК - выдача команд,
- лазерному нагревателю - команду на включение, продолжительность импульса,
- тепловизору - время включения, частоту и продолжительность регистрации выводимых кадров;
регистрируют в ПК с помощью тепловизора и разработанного программного обеспечения создаваемую в бездефектном контролируемом изделии эволюцию распределения температуры на поверхности изделия, как систему концентрических круговых изотерм, положение которых во времени определяют путем усреднения информации с большого числа пикселей матрицы тепловизора, установленного неподвижно относительно центра изображения пятна нагрева;
производят анализ результатов, определение анизатропности исследуемого материала и расчет теплофизических свойств материала - температуропроводности и теплопроводности.
Процедуры анализа различаются для материалов и изделий с высокой теплопроводностью в виде пластины (толщиной до 3 мм и продольными размерами >15-20 мм) и для массивных материалов и изделий и учитываются в программном обеспечении.
Эксперименты с точечным нагревом поверхности сфокусированным лазерным пучком или предварительно нагретым заостренным медным стержнем показали, что в однородном материале или многослойной бездефектной оболочке изотермы могут быть с высокой точностью аппроксимированы концентрическими окружностями. На фиг. 3 представлено радиальное распределение температуры TR для фиксированного расстояния R, усредненное по углам от 0 до 360°, для разных времен нагрева t (10 с- линия 1, 30 с - линия 2 и 60 с - линия 3) для одного из опытов.
Скорость распространения теплового фронта от точки нагрева (в пренебрежении теплообменом с окружающей средой, что оправдано при достаточно динамичном нагреве) зависит только от коэффициента температуропроводности материала χ (или эффективного коэффициента температуропроводности композита). Обработка данных, приведенных на фиг. 3, с учетом соответствующих моделей нестационарной теплопроводности, позволяет с хорошей точностью определить величину χ материала.
Таким образом, при определении χ для материалов и изделий с высокой теплопроводностью в виде пластины (толщиной до 3 мм и продольными размерами >15-20 мм) используют метод создания цилиндрического теплового фронта «точечным» источником нагрева, а процедура анализа заключается в следующем:
- для нескольких промежутков времени t от начала нагрева определяют центр осесимметричного распределения температур и производят его усреднение по углу;
- выбирают два значения времени t1 и t2 и строят зависимость температуры T от расстояния r для этих значений t; при этом время t1 соответствует максимальному времени эксперимента, а выбор времени t2 делается из соображений реализации наибольшего градиента температуры dT/dr на зависимости T(r):
- выбирают температуру Т1 на максимальном времени нагрева t1 и в точке на радиусе r1 большем, чем радиус пятна нагрева;
- на выбранном времени t2 и в точках на расстоянии r2 определяют температуру Т2;
- определяют значение отношения β=T2/T1; для наилучшей точности определения температуропроводности отношение температур должно быть близким к 0,5;
- если отношение β выходит из интервала 0,4<β<0,6, то задают новое значение расстояния r2 и снова определяют температуру Т2, повторяя эту процедуру до тех пор, пока значение β не станет равным 0,5±0,1;
- вычисляют величину χ по формуле
где:
χ - коэффициент температуропроводности материала в мм2/с;
γ= ~ 0,5772 - постоянная Эйлера;
r1 - расстояние до точки с температурой Т1;
r2 - расстояние до точки с температурой T2;
t1 - время нагрева максимальное;
t2 - время нагрева выбранное;
β - отношение между температурами Т2/Т1.
Как видно из таблицы 1, индивидуальные значения χ очень слабо зависят от конкретных заданных величин t2 и R2, кроме того, выбор конкретных значений t1 и R1 так же влияет на результат весьма слабо. Среднее значение представленной выборки χm=(12,54±0,27) мм2/с совпадает с табличным значением для величины χ малоуглеродистых сталей, а среднеквадратичное отклонение составляет около 2%. Варьирование величины T1 в некоторых разумных пределах также практически не влияет на результат.
Учитывая, что λ=χρcm, а плотность ρ и удельная теплоемкость cm материала обычно известны или могут быть взяты из справочников, знание величины χ дает возможность определить и величину λ. Так, для стали Ст3 ρ=7870 кг/м3, а cm=0,486 кДж/кг. К, что при χm=12,54 мм2/с дает значение λ=47,96 Вт/м°С, совпадающее с табличным.
Изобретение обеспечивает достижение технического результата - создание простого устройства для экспресс-инспекции и определения кинетических теплофизических свойств тестируемых материалов (в частности, коэффициенты температуропроводности и теплопроводности) путем создания нестационарного температурного поля, регистрируемого тепловизором на наружной поверхности исследуемого материала.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2018 |
|
RU2701775C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МАТЕРИАЛОВ | 2019 |
|
RU2725695C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ | 2020 |
|
RU2753620C1 |
Способ измерения теплопроводности жидкостей | 2022 |
|
RU2796794C1 |
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2017 |
|
RU2670186C1 |
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2017 |
|
RU2659617C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ | 2011 |
|
RU2460063C1 |
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДЫХ ТЕЛ | 2014 |
|
RU2549549C1 |
СПОСОБ БЕСКОНТАКТНОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ | 2001 |
|
RU2208778C2 |
СПОСОБ БЕСКОНТАКТНОГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ | 1999 |
|
RU2168168C2 |
Изобретение относится к теплофизическим измерениям и может быть использовано для определения теплофизических характеристик материалов и изделий неразрушающим методом путем экспериментально-расчетного способа определения кинетических теплофизических свойств тестируемых материалов. Устройство для бесконтактного определения теплофизических свойств твердых тел (коэффициентов температуропроводности и теплопроводности) содержит подключенные к компьютеру нагреватель и тепловизор. Согласно изобретению нагреватель выполнен в виде «точечного» источника тепловой энергии, создающего нестационарное температурное поле. Нестационарная тепловая картина регистрируется на доступной поверхности тепловизором как система концентрических круговых изотерм. «Точечный» нагрев создается на площадке размером порядка 1 мм2 лазером мощностью до 30 Вт видимого или инфракрасного диапазона и регулируемой длительностью импульса. Технический результат - повышение точности определения кинетических теплофизических характеристик металла. 2 з.п. ф-лы, 3 ил.
1. Устройство для бесконтактного определения теплофизических свойств твердых тел - коэффициентов температуропроводности и теплопроводности, содержащее подключенные к компьютеру нагреватель и тепловизор, отличающееся тем, что создается нестационарная тепловая картина внешним «точечным» источником энергии на площадке размером порядка 1 мм2, которая регистрируется на доступной поверхности тепловизором как система концентрических круговых изотерм.
2. Устройство по п. 1, отличающееся тем, что радиальная симметричность концентрических круговых изотерм определяется их измерением в двух взаимно перпендикулярных направлениях.
3. Устройство по п. 1, отличающееся тем, что нагреватель выполнен в виде предварительно разогретого до 100-150°С заостренного медного стержня, установленного с возможностью подвода к исследуемой поверхности.
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДЫХ ТЕЛ | 2014 |
|
RU2549549C1 |
СПОСОБ БЕСКОНТАКТНОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ | 2003 |
|
RU2251098C1 |
СПОСОБ БЕСКОНТАКТНОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ | 2001 |
|
RU2208778C2 |
Способ определения теплофизических свойств материалов | 1983 |
|
SU1138722A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА ПРИ НЕСТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ | 2012 |
|
RU2502989C1 |
CN 102183542 B, 21.11.2012. |
Авторы
Даты
2019-10-02—Публикация
2018-11-06—Подача