Способ экспериментальной оценки вероятности безотказной работы объекта Российский патент 2019 года по МПК G01D21/00 

Описание патента на изобретение RU2701882C1

Предлагаемое изобретение относится к измерительной технике и может быть использовано при экспериментальной оценке вероятности безотказной работы объектов с экспоненциальным законом распределения времени работы до отказа.

Известен способ испытания безотказности устройства, который позволяет оценить показатели надежности объекта на основе регистрации изменения во время испытаний контролируемого (определяющего) параметра, изменяющегося по экспоненциальному закону (RU 2444741, G01R 31/26 10.03.12). В литературе по надежности отказы объектов при достижении границы поля допуска называют параметрическими (например, Дружинин Г.В. Надежность автоматизированных систем. М:, Энергия, 1977, 3 часть). Такие отказы, в большинстве случаев, возникают при длительной эксплуатации объектов, т.е. во время заключительного периода эксплуатации (износа) объекта. Указанный способ оценки показателей надежности не позволяет учитывать внезапные отказы, определяющие, в основном, надежность во время нормальной эксплуатации объектов. Кроме того, даже для относительно простых элементов, выделить определяющий параметр и контролировать его из менение во времени достаточно трудно (Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М:, Наука, 1965, гл. 3), поэтому при экспериментальной оценке показателей надежности используют, в основном, контроль по альтернативному признаку, проверяют различного рода статистические гипотезы.

Порядок проведения испытаний на надежность, а также методы оценки по их результатам показателей надежности в теории надежности принято называть планами испытаний (Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М:, Наука, 1965, гл. 3; ГОСТ Р 27.607-2013. Надежность в технике. Управление надежностью. Условия про ведения испытаний на безотказность и статистические критерии и методы оценки их результатов). В частности, планы испытаний на безотказность устанавливают число испытуемых образцов, правила обращения с отказавшими при испытаниях образцами (их ремонт, замена, восстановление или снятие с испытаний) и критерии принятия решений об окончании испытаний. Так как вероятность безотказной работы всегда устанавливается для некоторой наработки, то определение этого показателя надежности предполагает испытания для соответствующей наработки, чаще всего, некоторого (установленного для определяемой вероятности) интервала времени.

Наиболее близким к заявляемому техническому решению является способ экспериментальной оценки вероятности безотказной работы объектов, имеющих экспоненциальное распределение времени работы до отказа (ГОСТ Р 27.403-2009. Надежность в технике. Планы испытаний для контроля вероятности безотказной работы. М:, Стандартинформ, 2010, прототип), в соответствии с которым для заданной наработки tз объекта, установленных значений приемочной и браковочной вероятностей, рисков поставщика и потребителя определяют число испытуемых объектов N, границы браковки, приемки и область продолжения испытаний, испытывают эти объекты, отказавшие во время испытаний объекты не восстанавливают, решение о приемке, браковке или продолжении испытаний принимают в любой момент ш суммарному времени испытаний или наработке и числу отказов, испытания прекращают решением о приемке или браковке.

В соответствии с этим способом (планом) испытаний для установленных исходных данных определяют число испытуемых объектов N, границы браковки, приемки, область продолжения испытаний, а испытание каждого объекта проводят до отказа или в течение заданного времени безотказной работы tз.

Для современных технических объектов заданная вероятность безотказной работы достаточно часто должна обеспечиваться в течение продолжительного времени работы. Если заданная наработка объекта установлена год, то даже если все объекты испытывают одновременно, продолжительность испытаний для определения вероятности безотказной работы в соответствии с известными планами испытаний не может быть меньше заданной наработки, т.е. меньше года. Таким образом, недостатком известного способа оценки вероятности безотказной работы является большая продолжительность испытаний, задерживающая внедрение новых разработок, уменьшающая ресурс испытываемых объектов (в некоторых случаях ресурс испытываемых объектов вырабатывается полностью). Проведение непрерывных продолжительных испытаний требует организации длительной круглосуточной работы различных служб и, следовательно, значительных затрат.

Для уменьшения времени (объема) испытаний оценку показателей надежности можно проводить по другим планам (ГОСТ Р 27.403-2009), при этом необходимо обосновать возможность вычисления необходимых показателей. В предлагаемом способе уменьшение времени испытаний основано на эргодических свойствах экспоненциального распределения времени работы объекта до отказа.

Целью предлагаемого способа экспериментальной оценки вероятности безотказной работы объектов, имеющих экспоненциальное распределение времени работы до отказа, является уменьшение продолжительности испытания объектов за счет испытаний большего числа объектов (в течение меньшего времени). Для уменьшения продолжительности испытаний в предлагаемом способе число испытуемых объектов N увеличивают в n раз, а максимальное время испытаний каждого объекта tз уменьшают в тоже число раз.

Распределение времени безотказной работы большинства объектов можно считать экспоненциальным (Литвиненко Р.С, Идиятуллин Р.Г., Аухадеев А.Э. Анализ использования показательного распределения в теории надежности технических систем. Надежность и качество сложных систем. 2016, №2 (14) с. 17-22). Уменьшение времени испытаний предлагаемым способом основано на стационарности и эргодичности процессов, описываемых этим распределением.

Стационарность случайного процесса означает, что вероятность возникновения отказа объекта за фиксированный промежуток времени Δt зависит только от величины этого промежутка и не зависит от его расположения на временной оси. Другими словами вероятность отказа за время Δt одинакова в любое время проведения испытаний (в начале, в середине, в конце).

Эргодичность случайного процесса означает, что каждая реализация случайного процесса достаточной продолжительности несет практически полную информацию о свойствах ансамбля реализаций. Однозначное соответствие между средним по ансамблю реализаций и средним по времени по одной реализации позволяет при обработке каждую отдельную реализацию случайного процесса достаточной продолжительности заменить множеством возможных реализаций той же общей продолжительности и наоборот: множество возможных реализаций можно заменить одной реализацией случайного процесса суммарной продолжительности возможных (Бендат Дж., Пир, сол А. Прикладной анализ случайных процессов. М:, Мир, 1989).

Для эргодических стационарных случайных процессов любая его вероятностная характеристика, полученная усреднением по времени, произведенным над одной единственной реализацией, сходится с вероятностью единица к соответствующей характеристике, полученной усреднением по множеству реализации этих процессов (ГОСТ 21878-76. Случайные процессы и динамические системы. Термины и определения). Естественно, и любая вероятностная характеристика эргодического процесса, полученная усреднением по множеству возможных реализаций, также сходится с вероятностью единица к соответствующей характеристике, полученной усреднением за достаточно большой промежуток времени из одной единственной реализации случайного процесса.

Заданное значение вероятности безотказной работы в течение наработки tз при испытаниях N объектов может подтверждено и в случае, если не откажет ни один из них, т.е. все испытываемые объекты в течение испытаний сохранят работоспособность. Этой ситуации соответствует структурная схема расчета надежности, состоящая из последовательно соединенных объектов.

Вероятность безотказной работы такой структуры в течение времени tз при интенсивности отказов одного объекта λ равна Р(tз)=ехр(-λ⋅tз⋅N). Так как для эргодических стационарных процессов время испытаний и количество испытуемых образцов эквивалентны, то одинаковые вероятности безотказной работы объектов с экспоненциальным законом распределения времени работы до отказа можно обеспечить, уменьшив время испытаний объектов в k раз при одновременном увеличении в k раз число испытуемых объектов. Как указывалось ранее, такая замена обеспечивает равнозначность результатов с вероятностью, сколь угодно близкой к единице, поэтому достоверность полученных результатов сохраняется на уровне известного способа оценки вероятности безотказной работы.

В предлагаемом способе экспериментальной оценки вероятности безотказной работы объектов изменен порядок выполнения действий во времени и условия их выполнения - каждый объект испытывается в течение меньшего времени, а число исследуемых объектов увеличено, т.е. в предлагаемый способ соответствует признакам объекта изобретения. Отметим, что использование экспоненциального распределения - постоянство интенсивности отказов объектов, особенно на начальном периоде эксплуатации, принимается с некоторыми допущениями. Поэтому время испытаний (число испытуемых объектов) не следует изменять в десятки раз.

Предлагаемый способ расчетно-экспериментальной оценки вероятности безотказной работы проверен для прибора учета расхода жидкости (счетчика). Для исследуемого счетчика установлены вероятность безотказной работы в течение года Р(8760 часов) = 0.95, значения приемочного уровня Рα=0.95, браковочного уровня Рβ=0.70, значения риска поставщика и потребителя α=β=0.2. Для этих исходных данных определить число объектов, которые должны быть подвергнуты испытаниям для принятия решения о приемке или браковке - N и предельное браковочное число отказов - с по таблицам приложения А (ГОСТ Р 27.403-2009) невозможно, поэтому разработка исходного плана испытаний проведена на основе равенств (Б2) и (Б3) указанного ГОСТ:

- число сочетаний из N по i.

Для удобства определения числа объектов, одновременно удовлетворяющим равенствам (1) и (2) и устанавливаемых на испытания в соответствии с известным способом (прототипом), в формуле (1), вместо символа N будем использовать Nα - число объектов, обеспечивающих необходимое значение вероятности приемочного уровня Рα, а в формуле (2) - Nβ - число объектов, обеспечивающих необходимое значение вероятности браковочного уровня Рβ.

При с=1 формулы (1) и (2) существенно упрощаются и в соответствии с принятыми обозначениями принимают вид:

После преобразований получим: .

Подставив в эти формулы установленные значения вероятностей приемки и браковки, рисков поставщика и заказчика получим Nα=4,35 и Nβ=4,51, т.е. найденные значения Nα и Nβ, одновременно достаточно хорошо удовлетворяют равенствам (1) и (2). Округлив значения Nα и Nβ до ближайшего большего целого, принимаем N=5. Таким образом, для подтверждения вероятности безотказной работы Р(8760 ч)=0.95 в известном способе достаточно 5 счетчиков, которые необходимо испытывать непрерывно минимум год или 8760 часов.

В соответствии с предлагаемым способом на испытания были установлены 20 образцов счетчиков, а время испытаний уменьшено до 2190 часов. Во время испытаний все счетчики сохранили работоспособность, т.е. подтверждена установленная вероятности безотказной работы 0.95. Последующее серийное производство счетчиков и их эксплуатация подтвердили результаты проведенных исследований.

Таким образом, применение предлагаемого способа позволило уменьшить время испытаний счетчиков в 4 раза, хотя для этого на испытания было установлено двадцать счетчиков вместо пяти. Учитывая невысокую стоимость каждого счетчика, при испытаниях помимо уменьшения времени испытаний получена существенная экономия затрат на проведение испытаний.

Похожие патенты RU2701882C1

название год авторы номер документа
СПОСОБ КОНТРОЛЬНЫХ ИСПЫТАНИЙ НА ГАММА-ПРОЦЕНТНЫЙ РЕСУРС НЕВОССТАНАВЛИВАЕМЫХ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ С ЭКСПОНЕНЦИАЛЬНЫМ ЗАКОНОМ РАСПРЕДЕЛЕНИЯ ВРЕМЕНИ ДО ОТКАЗА 2012
  • Вельт Андрей Дмитриевич
  • Митрохин Владимир Дмитриевич
RU2517948C1
Способ контрольных испытаний на гамма-процентный ресурс невосстанавливаемых радиоэлектронных устройств 2017
  • Вельт Андрей Дмитриевич
  • Митрохин Владимир Дмитриевич
RU2660748C1
Способ контроля параметрической безотказности изделий по параметрам состояния 2020
  • Окороков Максим Владимирович
  • Сухорученков Борис Иванович
  • Тацышин Николай Николаевич
RU2742282C1
СПОСОБ ОПРЕДЕЛЕНИЯ РЕСУРСА КОРАБЕЛЬНОЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2018
  • Киселевич Валерий Павлович
  • Константиновский Валентин Михайлович
  • Сухов Владимир Васильевич
RU2700799C1
СПОСОБ ОЦЕНКИ ЭЛЕКТРОЭРОЗИОННОЙ ИЗНОСОСТОЙКОСТИ МАТЕРИАЛОВ ДЛЯ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ 2004
  • Измайлов В.В.
  • Новосёлова М.В.
RU2265862C1
СПОСОБ ДОВОДКИ ДВИГАТЕЛЯ 2011
  • Сарычев Сергей Витальевич
  • Охотников Александр Анатольевич
RU2474804C1
Устройство для статистического приемочного контроля газоразрядных индикаторов 2019
  • Шестеркин Алексей Николаевич
RU2714382C1
Способ проведения многофакторных эквивалентно-циклических испытаний 2021
  • Комиссаров Александр Владимирович
  • Виноградов Александр Борисович
  • Деревянкин Валерий Петрович
  • Шишкин Вадим Викторинович
RU2783770C1
Способ контроля безотказности технических систем по результатам испытаний элементов 2019
  • Окороков Максим Владимирович
  • Сухорученков Борис Иванович
RU2700717C1
СПОСОБ ИСПЫТАНИЯ БЕЗОТКАЗНОСТИ УСТРОЙСТВА 2010
  • Патрашин Александр Иванович
  • Болтарь Константин Олегович
  • Яковлева Наталья Ивановна
  • Соляков Владимир Николаевич
RU2444741C1

Реферат патента 2019 года Способ экспериментальной оценки вероятности безотказной работы объекта

Предлагаемое изобретение относится к измерительной технике и может быть использовано при экспериментальной оценке вероятности безотказной работы объектов с экспоненциальным законом распределения времени работы до отказа. Способ оценки вероятности безотказной работы объектов, в котором для установленных исходных данных определяют число испытуемых объектов N, границы браковки, приемки и область продолжения испытаний, испытывают эти объекты, отказавшие во время испытаний объекты не восстанавливают, решение о приемке, браковке или продолжении испытаний принимают в любой момент по суммарному времени испытаний или наработке и числу отказов, испытания прекращают решением о приемке или браковке. Для уменьшения времени испытаний число испытуемых объектов N увеличивают в n раз, а максимальное время испытаний каждого объекта tз уменьшают в то же число раз. Предлагаемый способ обеспечивает уменьшение времени проведения испытаний при сохранении достоверности исследований.

Формула изобретения RU 2 701 882 C1

Способ экспериментальной оценки вероятности безотказной работы объектов, имеющих экспоненциальное распределение времени работы до отказа, в соответствии с которым для заданной наработки объекта tз, установленных значений приемочной и браковочной вероятностей, рисков поставщика и потребителя определяют число испытуемых объектов N, границы браковки, приемки и область продолжения испытаний, испытывают эти объекты, отказавшие во время испытаний объекты не восстанавливают, решение о приемке, браковке или продолжении испытаний принимают в любой момент по суммарному времени испытаний или наработке и числу отказов, испытания прекращают решением о приемке или браковке, отличающийся тем, что с целью уменьшения продолжительности испытаний число испытуемых объектов N увеличивают в n раз, а максимальное время испытаний каждого объекта tз уменьшают в то же число раз.

Документы, цитированные в отчете о поиске Патент 2019 года RU2701882C1

Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Д.В.ИОРГАЧЕВ и О.В.БОНДАРЕНКО "Волоконно-оптические кабели и линии связи", М.:"Эко-Трендз", 2002, стр
Прибор для запора стрелок 1921
  • Елютин Я.В.
SU167A1
И.Л.РОЗЕНФЕЛЬД и К.А.ЖИГАЛОВА "Ускоренные методы коррозионных испытаний металлов", М
"Металлургия", 1966, стр
Аппарат для испытания прессованных хлебопекарных дрожжей 1921
  • Хатеневер Л.С.
SU117A1
Копировальная машина для гидротипной печати цветных кинофильмов 1956
  • Крылов Л.П.
  • Шмаков А.Г.
SU124803A1
RU 2008105108 A, 20.08.2009.

RU 2 701 882 C1

Авторы

Шестеркин Алексей Николаевич

Даты

2019-10-02Публикация

2018-07-23Подача