Тест-система для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах Российский патент 2019 года по МПК C12Q1/68 

Описание патента на изобретение RU2702858C1

Изобретение относится к ветеринарной микробиологии, в частности к наборам для определения видовой принадлежности мяса с помощью полимеразной цепной реакции с флуоресцентной детекцией в реальном времени.

Известен набор для определения видовой принадлежности тканей кур и свиней методом полимеразной цепной реакции содержащий комплект реагентов для экстракции ДНК из клинического материала, продуктов питания и кормов для животных; комплект реагентов для амплификации ДНК Gallus gallus и Sus scrofa; комплект реагентов для электрофоретической детекции продуктов амплификации в агарозном геле f https://docviewer.vandex.ru).

Также известен набор включающий пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, специфичных для участка генома ДНК баранины (Ovis) и говядины (Bos) олигонуклеотидных праймеров, зондов, внутренний контрольный образец в виде суспензии бактериофага и положительных контрольных образцов - содержащих фрагменты геномов ДНК баранины (Ovis) и говядины (Bos), (Сорокина М.Ю. Автореферат диссертации по ветеринарии на тему Разработка тест-системы для определения видовой принадлежности мясных ингредиентов в кормах методом полимеразной цепной реакции, Москва, 2004 - прототип).

Однако известный набор используется для полимеразной цепной реакции с электрофоретической детекцией, в которой нуклеотидная последовательность непосредственно читается по электрофореграмме. Длина фрагмента, который может быть расшифрован этим методом, ограничивается разрешающей способностью метода гель-электрофореза, что влияет на точность диагностирования видовой принадлежности говядины или баранины в кормах.

Кроме того, отсутствует возможность идентификации видовой принадлежности баранины и говядины в продовольственном сырье и пищевых продуктах.

Техническим результатом является повышение точности идентификации видовой принадлежности говядины или баранины и расширение функциональных возможностей.

Технический результат достигается тем, что в тест-системе для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах, включающем пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, специфичных для участка генома ДНК баранины (Ovis) и говядины (Bos) олигонуклеотидных праймеров, зондов, внутренний контрольный образец в виде суспензии бактериофага и положительных контрольных образцов - содержащих фрагменты геномов ДНК баранины (Ovis) и говядины (Bos), согласно изобретению для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца – смесь, содержащую фрагменты геномов баранины (Ovis), говядины (Bos) и бактериофага Т4, взятые в соотношении 1:1:1 со следующими нуклеотидными последовательностями:

Ovis F GCCTCATCTCCCTCCAACAG прямой праймер

Ovis R CGGAAGCCTGTAATTACAGCTC обратный праймер

Ovis Р R6G-CTCATGTCTGTCCTTTGGTGTTATGAATGC-BHQ1 зонд

Bos F AACAGCATCATTCTACCCACTT прямой праймер

Bos R ACCTAAATTCCTATTCTAACACTG обратный праймер

Bos Р ROX-ACGACTTACATACTCCACTGCACTCACG-BHQ2 зонд

T4F TACATATAAATCACGCAAAGC

T4R TAGTATGGCTAATCTTATTGG

Т4Р CY5 ACATTGGCACTGACCGAGTTC.

Новизна заявляемой тест-системы заключается в том, что за счет существенных признаков, а именно:

- нуклеотидные последовательности праймеров и зонда;

- использование для внутреннего контрольного образца суспензию бактериофага Т4 с концентрацией 5×10 копий нуклеотидных последовательностей на 1 мкл, если концентрация копий нуклеотидных последовательностей отклоняется в большую или меньшую сторону, то наблюдаются повторности сомнительных образцов;

- использование для положительного контрольного образца - смесь содержащую фрагменты геномов баранины (Ovis), говядины (Bos) и бактериофага Т4 взятых в соотношении 1:1:1, обеспечивается с высокой точностью идентификация видовой принадлежности баранины и говядины наличие их ингредиентов в продовольственном сырье, кормах и пищевых продуктах.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Заявляемый способ рекомендовано использовать в специализированных ветеринарных, санитарно-эпидемиологических, животноводческих, сельскохозяйственных предприятиях, что соответствует критерию «промышленная применимость».

Сущность изобретения поясняется чертежом, где на рисунках 1 - 5 представлены скриншоты с дисплея прибора Rotor-Gene Q: рис. 1 - представлен график канала Су5 для внутреннего контрольного образца (ВКО); рис. 2

- таблица количественных данных для Cycling A.Red (ВКО); рис. 3 - представлен график канала JOE/Yellow для специфического сигнала баранины (Ovis); рис. 4 - представлен график канала ROX/Orange - для говядины (Bos); рис. 5 - таблица количественных данных для Cycling A.Yellow (Ovis) и A.Orange (Bos).

Пример конкретного использования тест-системы для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах.

Тест-система имеет пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, специфичных для участка генома ДНК баранины (Ovis) и говядины (Bos) олигонуклеотидных праймеров, зондов, внутренний контрольный образец в виде суспензии бактериофага и положительных контрольных образцов - содержащих фрагменты геномов ДНК баранины (Ovis) и говядины (Bos). Для внутреннего контрольного образца использована суспензия бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца – смесь, содержащую фрагменты геномов баранины (Ovis), говядины (Bos) и бактериофага Т4, взятые в соотношении 1:1:1 со следующими нуклеотидными последовательностями:

Ovis F GCCTCATCTCCCTCCAACAG прямой праймер

Ovis R CGGAAGCCTGTAATTACAGCTC обратный праймер

Ovis Р К6О-СТСАТОТСТОТССТТТООТОТТАТОААТСС-BHQ1 зонд

Bos F AACAGCATCATTCTACCCACTT прямой праймер

Bos R ACCTAAATTCCTATTCTAACACTG обратный праймер

Bos Р ROX-ACGACTTACATACTCCACTGCACTCACG-BHQ2 зонд

T4F TACATATAAATCACGCAAAGC

T4R TAGTATGGCTAATCTTATTGG

Т4Р CY5 ACATTGGCACTGACCGAGTTC.

Использование для разных видов контроля различные формы материала бактериофага Т4: суспензии и фрагмента генома со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов.

При конструировании праймеров и зонда основными требованиями были: степень гомологии (комплементарность) с выбранным участком гена; отсутствие самокоплементарных участков внутри олигонуклеотидов и комплементарности друг другу, чтобы не допускать возникновения устойчивых вторичных структур (димеров); близость значений температуры отжига праймеров.

Конструирование специфических праймеров и зонда осуществляли с помощью компьютерных программ на основании анализа нуклеотидных последовательностей референтных штаммов и изолятов, опубликованных на ресурсе GenBank и подбора условий для проведения ПЦР в реальном времени с применением разработанных праймеров и зонда, несущего флуорофор и тушитель, и комплементарного части амплифицируемого со специфическими праймерами фрагмента.

Праймеры, специфичные для барана (Ovis aries) и быка (говядины) (Bos taurus) были отобраны на основе митохондриальных последовательностей ДНК геномов барана и быка (Ovis aries isolate SH21 ATP synthase FO subunit 6 (ATP6) gene, partial cds; mitochondrial, код доступа KY453456.1 complete genome, участок между 122 и 353 и Bos taurus mitochondrion, complete genome 4724 и 4957). Праймеры спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность. Для детекции продуктов амплификации подобраны олигонуклеотидные флуоресцентно-меченные зонды Ovis Р (комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров Ovis F и Ovis R) и Bos Р (комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров Bos F и Bos R). Зонды были помечены красителями FAM и HEX. Используя программу "Oligo 6.0 м описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Ни одна из выбранных последовательностей не обнаружена в геноме любых видов растений и животных, которые потенциально встречаются вблизи тех, которые определены в кормах и пищевых продуктах.

В качестве внутреннего контроля использовался бактериофаг Т4, имеющий геномную ДНК порядка 169-170 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM137666.1). В результате анализа был выбран участок между 400 и 500 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность.

Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем Су5. Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Пример

Для подтверждения эффективности тест-системы были использованы сухие корма в виде рыбной и мясной муки; сырые и термически обработанные мясные продукты, т.е. мясные полуфабрикаты.

От пробы плотной консистенции отбирают на исследование общую пробу весом 10-50 г. Гранулированную или консервированную продукцию перед исследованием (10-20 г) растирают в ступке до гомогенного состояния.

Лабораторные пробы (20-40 мг) отбирают на исследование в одноразовые микропробирки вместимостью 1,5 мл в двух повторах. Отобранные лабораторные пробы направляют на выделения ДНК.

Исследование проводили с помощью набора реагентов «ПЦР-БАРАНИНА-ГОВЯДИНА-ФАКТОР». Набор состоит из комплекта реагентов для проведения мультиплексной ПЦР (комплект №1) и комплекта контрольных образцов (комплект №2). Набор выпускается в двух вариантах: 1) Для анализа 55 образцов (включая контрольные образцы) 2) Для анализа 110 образцов (включая контрольные образцы). Наборы используют в соответствии с инструкцией по применению набора реагентов «ГЩР-БАРАНИНА-ГОВЯДИНА-ФАКТОР» для определения видовой принадлежности тканей жвачных животных видов Ovis aries (бараны) и Bos taurus (быки) методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени ТУ21.10.60-152-51062356-2018, http://www.vetfaktor.ru/.

Состав набора приведен в Таблицах 1 и 2.

* Возможна легкая опалесценция

Исследования состоит из трех этапов:

- экстракция нуклеиновая кислота (НК);

- проведение реакции ПЦР РВ;

- учет результатов анализа.

Для экстракции (выделение) НК из исследуемых проб отбирают необходимое количество одноразовых пробирок объемом 1,5 мл, включая отрицательный контроль выделения. Во все пробирки с исследуемыми образцами, включая пробирку для отрицательный контрольный образец (ОКО), вносят по 10 мкл внутренний контрольный образец (ВКО) для баранины и говядины (БГ) в качестве которого используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл. Следующий этап это подготовка образцов к проведению ПЦР. Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы - 10 мкл.

Успешное прохождение реакции контролируют использованием положительный контрольный образец (ПКО) БГ, ВКО БГ и ДНК буфера. В качестве ПКО используют смесь содержащую фрагменты геномов баранины (Ovis), говядины (Boss) и бактериофага Т4 взятых в соотношении 1:1:1.

В отдельной пробирке смешать компоненты набора из расчета на каждую реакцию:

5 мкл ПЦР СМЕСЬ БГ;

10 мкл ПЦР БУФЕР БГ;

0,5 мкл TAQ POLYMERASE

Перемешивают смесь на вортексе и сбросывают капли кратковременным центрифугированием.

Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси.

Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора и используют программное обеспечение прибора Далее проводят ПЦР РВ с флуоресцентной детекцией.

Параметры температурно-временного режима амплификации на приборе «Rotor-Gene Q» представлены в таблице 3.

Интерпретация результатов анализа.

Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в соответствии с инструкцией производителя к прибору. Учет результатов ПЦР РВ проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).

Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4.

Появление любого значения Ct в таблице 4 результатов для отрицательного контроля этапа экстракции ВК- на каналах ROX/Orange и JOE/Yellow и для отрицательного контроля этапа ПЦР К- на любом из каналов свидетельствует о наличии контаминации реактивов или образцов (рис. 1,2). В этом случае результаты анализа для всех проб считаются недействительными. Требуется повторить анализ всех проб, а также предпринять меры по выявлению и ликвидации источника контаминации.

Образцы, для которых значение Ct по каналу Cy5/Red отсутствует или превышает 35 цикл (и при этом не получен положительный результат на каналах JOE/Yellow и/или ROX/Orange) требуют повторного проведения исследования с этапа экстракции ДНК. Задержка в значениях пороговых циклов для исследуемых образцов указывает на присутствие ингибиторов в пробе(ах) или на ошибки при экстракции ДНК или при постановке реакции ПЦР РВ.

В образце обнаружена ДНК Ovis aries баранины, если наблюдается экспоненциальный рост сигнала на канале JOE/Yellow, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4, рис. 3, 5).

В образце обнаружена ДНК Bos taurus говядины, если наблюдается экспоненциальный рост сигнала на канале Rox/Orange, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4, рис. 4, 5).

Если для исследуемого образца по каналам JOE/Yellow и/или ROX/Orange значение Ct определяется позднее 37 цикла при корректном прохождении положительных и отрицательных контролей, образец исследуется повторно с этапа экстракция ДНК. Если при повторной постановке Ct более 37 результат считается отрицательным (содержание целевой ДНК ниже предела обнаружения метода).

Образец считается отрицательным (ДНК Ovis aries и/или Bos taurus не обнаружена) если не определяется значение Ct (не наблюдается рост специфического сигнала) на канале Rox/Orange и/или JOE/Yellow при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4, рис. 3, 4, 5), а значение Ct по каналу Cy5/Red менее 35.

Для исследуемых образцов (сухой корм и мясные полуфабрикаты) предел точности содержания баранины и говядины представлен в таблице 5.

Для доказательства эффективности использования ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемого с прототипом, в котором использовался метод ПЦР с электрофоретической детекцией. Оказалось чувствительность ПЦР с флуоресцентной детекцией при обнаружении примеси тканей баранины и говядины в кормах в 10 раз выше, чем ПЦР с электрофоретической детекцией.

Похожие патенты RU2702858C1

название год авторы номер документа
Способ идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах 2018
  • Малышев Денис Владиславович
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Гулюкин Михаил Иванович
  • Лайшев Касим Анверович
  • Юлдашбаев Юсупжан Артыкович
  • Мирошников Сергей Александрович
  • Шаравьев Павел Викторович
  • Семененко Марина Петровна
  • Молчанов Алексей Вячеславович
  • Баннов Василий Александрович
  • Дробин Юрий Дмитриевич
RU2694713C1
Тест-система для определения видовой принадлежности тканей кур и свиней в продовольственном сырье, кормах и пищевых продуктах 2018
  • Котельникова Александра Андреевна
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Фисинин Владимир Иванович
  • Кочиш Иван Иванович
  • Стекольников Анатолий Александрович
  • Клименко Александр Иванович
  • Шахов Алексей Гаврилович
  • Суханова Светлана Фаилевна
  • Забашта Николай Николаевич
  • Дробин Юрий Дмитриевич
RU2700480C1
Способ идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Инюкина Татьяна Андреевна
  • Нестеренко Антон Алексеевич
  • Семененко Марина Петровна
  • Семенов Владимир Григорьевич
  • Забашта Сергей Николаевич
RU2728662C1
Тест-система для идентификации ДНК ткани кошки домашней (Felis silvestris catus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Дробин Юрий Дмитриевич
  • Котельникова Александра Андреевна
  • Лоретц Ольга Геннадьевна
  • Быкова Ольга Александровна
  • Щукина Ирина Владимировна
  • Тюрин Владимир Григорьевич
RU2728639C1
Способ определения видовой принадлежности тканей кур и свиней в продовольственном сырье, кормах и пищевых продуктах 2018
  • Котельникова Александра Андреевна
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Дробин Юрий Дмитриевич
  • Малышев Денис Владиславович
  • Егоров Иван Афанасьевич
  • Джавадов Эдуард Джавадович
  • Тюрин Владимир Григорьевич
  • Салеева Ирина Павловна
  • Лоретц Ольга Геннадьевна
  • Дельцов Александр Александрович
  • Кузьминова Елена Васильевна
RU2700479C1
Способ идентификации ДНК ткани японской скумбрии (Scomber japonicus) в рыбных продуктах, в мясокостной рыбной муке и кормах с помощью полимеразной цепной реакции в режиме реального времени 2023
  • Черных Олег Юрьевич
  • Шевченко Александр Алексеевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевченко Людмила Васильевна
  • Манакова Алина Юрьевна
  • Яковенко Павел Павлович
  • Агольцов Валерий Александрович
  • Шевченко Александр Николаевич
  • Баннов Василий Александрович
  • Чернов Альберт Николаевич
  • Малышев Денис Владиславович
  • Забашта Сергей Николаевич
  • Белоусов Василий Иванович
  • Адиатулин Ильяс Фаритович
  • Семененко Марина Петровна
RU2814552C1
Способ идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Котельникова Александра Андреевна
  • Малышев Денис Владиславович
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Исаева Альбина Геннадьевна
  • Шаравьев Павел Викторович
  • Лоретц Ольга Геннадьевна
  • Лихоман Александр Владимирович
RU2742952C1
Способ идентификации ДНК ткани медведя (Ursus) в сухих кормах и мясных полуфабрикатах 2019
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Черных Владимир Олегович
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шевченко Александр Алексеевич
  • Вацаев Шахаб Вахидович
  • Кощаева Ольга Викторовна
  • Барашкин Михаил Иванович
  • Донник Ирина Михайловна
  • Усенко Валентина Владимировна
  • Забашта Николай Николаевич
RU2726427C1
Тест-система идентификации ДНК ткани японской скумбрии (Scomber japonicus) в рыбных продуктах, в мясокостной рыбной муке и кормах с помощью полимеразной цепной реакции в режиме реального времени 2023
  • Черных Олег Юрьевич
  • Шевченко Александр Алексеевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевченко Людмила Васильевна
  • Манакова Алина Юрьевна
  • Яковенко Павел Павлович
  • Агольцов Валерий Александрович
  • Шевченко Александр Николаевич
  • Баннов Василий Александрович
  • Чернов Альберт Николаевич
  • Малышев Денис Владиславович
  • Забашта Сергей Николаевич
  • Белоусов Василий Иванович
  • Адиатулин Ильяс Фаритович
  • Семененко Марина Петровна
RU2816210C1
Тест-система для идентификации ДНК ткани дальневосточной сардины, или иваси (Sardinops melanostictus), в рыбных продуктах, в мясокостной рыбной муке и кормах с помощью полимеразной цепной реакции в режиме реального времени 2023
  • Черных Олег Юрьевич
  • Шевченко Александр Алексеевич
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Шевченко Людмила Васильевна
  • Манакова Алина Юрьевна
  • Яковенко Павел Павлович
  • Агольцов Валерий Александрович
  • Шевченко Александр Николаевич
  • Баннов Василий Александрович
  • Чернов Альберт Николаевич
  • Малышев Денис Владиславович
  • Забашта Сергей Николаевич
  • Белоусов Сергей Николаевич
  • Адиатулин Ильяс Фаритович
  • Семененко Марина Петровна
RU2823069C1

Иллюстрации к изобретению RU 2 702 858 C1

Реферат патента 2019 года Тест-система для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах

Изобретение относится к области биотехнологии. Изобретение представляет собой тест-систему для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах, включающую пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, специфичных для участка генома ДНК баранины (Ovis) и говядины (Bos) олигонуклеотидных праймеров, зондов, внутренний контрольный образец в виде суспензии бактериофага и положительных контрольных образцов, содержащих фрагменты геномов ДНК баранины (Ovis) и говядины (Bos), согласно изобретению для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×10 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца – смесь, содержащую фрагменты геномов баранины (Ovis), говядины (Bos) и бактериофага Т4, взятые в соотношении 1:1:1. Изобретение позволяет повысить точность идентификации видовой принадлежности говядины или баранины. 5 ил., 5 табл.

Формула изобретения RU 2 702 858 C1

Тест-система для идентификации видовой принадлежности баранины и говядины в продовольственном сырье, кормах и пищевых продуктах, включающая пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, специфичных для участка генома ДНК баранины (Ovis) и говядины (Bos) олигонуклеотидных праймеров, зондов, внутренний контрольный образец в виде суспензии бактериофага и положительных контрольных образцов, содержащих фрагменты геномов ДНК баранины (Ovis) и говядины (Bos), отличающаяся тем, что для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца – смесь, содержащую фрагменты геномов баранины (Ovis), говядины (Bos) и бактериофага Т4, взятые в соотношении 1:1:1, со следующими нуклеотидными последовательностями:

Ovis F GCCTCATCTCCCTCCAACAG прямой праймер

Ovis R CGGAAGCCTGTAATTACAGCTC обратный праймер

Ovis Р R6G-CTCATGTCTGTCCTTTGGTGTTATGAATGC-BHQ1 зонд

Bos F AACAGCATCATTCTACCCACTT прямой праймер

Bos R ACCTAAATTCCTATTCTAACACTG обратный праймер

Bos Р ROX-ACGACTTACATACTCCACTGCACTCACG-BHQ2 зонд

T4F TACATATAAATCACGCAAAGC

T4R TAGTATGGCTAATCTTATTGG

Т4Р CY5 ACATTGGCACTGACCGAGTTC

Документы, цитированные в отчете о поиске Патент 2019 года RU2702858C1

СОРОКИНА М.Ю
Разработка тест-системы для определения видовой принадлежности мясных ингредиентов в кормах методом полимеразной цепной реакции, автореферат диссертации, Москва, 2004
КОМАРОВА И.Н
Разработка ПЦР-Тест-систем для видовой идентификации и количественной оценки мясного сырья в составе мелкоизмельченных полуфабрикатов и готовых мясных продуктов, автореферат диссертации, Москва, 2005.

RU 2 702 858 C1

Авторы

Черных Олег Юрьевич

Котельникова Александра Андреевна

Баннов Василий Александрович

Донник Ирина Михайловна

Лысенко Александр Анатолиевич

Кривонос Роман Анатольевич

Шевкопляс Владимир Николаевич

Кощаев Андрей Георгиевич

Дайбова Любовь Анатольевна

Малышев Денис Владиславович

Дунин Иван Михайлович

Амерханов Харон Адиевич

Дорожкин Василий Иванович

Племяшов Кирилл Владимирович

Бахарев Алексей Александрович

Коломиец Сергей Николаевич

Кривоногова Анна Сергеевна

Дробин Юрий Дмитриевич

Даты

2019-10-11Публикация

2018-10-01Подача