ИНГИБИТОР КОРРОЗИИ Российский патент 2019 года по МПК C23F11/14 

Описание патента на изобретение RU2706927C1

Изобретение относится к области получения ингибиторов коррозии газо- и нефтепромыслового оборудования и трубопроводов транспортировки нефти, работающих в высокоминерализованных сероводородсодержащих средах, а именно к способу получения активной основы ингибиторов - производных азотсодержащих гетероциклов - имидазолинонов.

Известно применение ингибитора коррозии в сероводородной среде на основе хлоргидратов аминопарафинов (А.С. №652315, Е21В 43/00, 1979).

Однако недостатком заявленного ингибитора является невысокий защитный эффект при дозировке до 100 мг/л.

Известен также ингибитор коррозии для защиты оборудования в сероводородсодержащих средах, в котором в качестве активной основы -продукт взаимодействия одного моль жирной кислоты с числом углеродных атомов С820 и 0,1-1 моль аминопарафинов с числом атомов углерода C820 в соотношении взаимодействия 10÷50 (А.С. №2061091, C23F 11/00, 1996).

Недостатками ингибитора коррозии являются недостаточно высокий защитный эффект при дозировке 50 мл/л, а также применение метилового спирта, который имеет низкую температуру кипения и применяется в количестве 80 мл на 10 г активной основы.

Близкими по структуре (прототипами) являются ингибиторы коррозии, содержащие в качестве активной основы смесь модифицированных имидазолинов с альдиминами или основаниями Шиффа (Патент RU 2394817, C23F 11/14, 2010).

Недостатками указанных ингибиторов коррозии является недостаточно высокая эффективность при малых дозировках, ограниченность сырьевой базы.

Задача изобретения - разработка способа получения ингибитора коррозии и расширение ассортимента ингибиторов коррозии, применяемых в высокоминерализованных средах.

Задача решается тем, что в качестве активной основы ингибиторов коррозии применяют производные пятичленных гетероциклов - имидазолиноны общей формулы

где R-С6Н5 (1), С6Н4ОСН3 (2)

Сущность изобретения заключается в создании ингибитора коррозии, содержащего в качестве активной основы 2-арилиденгидразиноимидазолиноны-4, полученные на основе аминогуанидина:

где R-С6Н5 (1), С6Н4ОСН3 (2)

Получение соединений иллюстрируется следующими примерами.

Пример 1. Синтез 1-арил-4-хлорацетилгуанилгидразонов ароматических альдегидов

1-Арил-4-хлорацетилгуанилгидразоны ароматических альдегидов получают в две стадии. На первой стадии в трехгорлую колбу, снабженную механической мешалкой, обратным холодильником и термометром, трубкой для подачи азота, загружают 40 мл абсолютного этанола, 0,01 моль аминогуанидина, 0,01 моль соответствующего альдегида. Реакционную смесь подкисляют соляной кислотой до рН=3. Реакцию проводят 4 часа при температуре кипения реакционной смеси. Продукт высаждают в дистиллированную воду, промывают и высушивают, после перекристаллизовывают из этанола.

Получают гидрохлорид гуанилгидразон бензальдегида, выход 91%, температура плавления 164…165°С; гидрохлорид гуанилгидразон n-метоксибензальдегид, выход 93%, температура плавления 183…184°С.

На второй стадии проводят хлорацетилирование 1-арилгуанилгидразонов. В трехгорлую колбу, снабженную механической мешалкой, обратным холодильником и термометром загружают при помешивании 6,9 г (0,035 моль) гидрохлорида гуанилгидразона бензальдегида, 4,5 г (0,04 моль) хлорацетилхлорида, 3,3 г (0,04 моль) ацетата натрия и 5 мл ледяной уксусной кислоты. Реакционную смесь нагревают до 40…50°С. После снижения температуры реакционную смесь обрабатывают диизопропиловым эфиром и отфильтровывают выпавший осадок, который перекристаллизовывают из этанола.

Получают 4-хлорацетилгуанилгидразон бензальдегид, выход 89%, температура плавления 147…148°С; 4-хлорацетилгуанилгидразон п-метоксибензальдегид, выход 80%, температура плавления 168…169°С.

Пример 2. Получение пятичленных гетероциклов.

В двугорлую колбу, снабженную механической мешалкой и обратным холодильником, загружают 0,05 моль 1-арил-4-хлорацетилгуанилгидразона и 10 мл пиридина. Реакционную смесь кипятят 1 час. После охлаждения образующийся осадок отфильтровывают, промывают водой и ацетоном, перекристаллизовывают из ледяной уксусной кислоты.

Физико-химические характеристики 2-бензилиденгидразино-имидазолинона-4 (соединение 1):

Выход: 90%.

Т. пл. °С: 290…292.

ИК-спектр, см-1: 830, 1385, 1485, 1620, 1710, 3365.

Масс-спектр, m/z: 202, 113, 90, 84.

Физико-химические характеристики 2-n-метоксибензилиден-гидразиноимидазолинона-4 (соединение 2): Выход: 92%. Т. пл. °С: 266 (разл).

ИК-спектр, см-1: 840, 1390, 1480, 1645, 1710, 3375. Масс-спектр, m/z: 232, 113, 84, 42.

Пример 3. Испытания заявленного ингибитора коррозии. Испытания проводили по программе, приведенной в ГОСТ 9.905-82, двумя методами.

При электрохимическом методе испытания по определению плотности коррозионного тока, соответствующего скорости коррозии, проводили на потенциостате типа ПИ-50-1 в электрохимической ячейке с исследуемым электродом, изготовленным из стали марки Ст20 и хлорсеребряным электродом сравнения, снабженным платиновым вспомогательным электродом при концентрации соединений 100 мг/л в модельной и кислой (рН=3) среде. Плотность коррозионного тока определяли экстраполяцией участка Тафеля до значения потенциала коррозии на поляризационной кривой. Защитный эффект соединений оценивали сравнением плотностей, снятых в неингибированной и ингибированной средах.

При гравиметрическом методе испытания проводили в аппарате с перемешивающим устройством со скоростью течения испытуемой среды 1,0 м/с на образцах, изготовленных из стали марки Ст20.

Результаты опытов представлены в таблице 1.

Пример 4.

Ингибитор коррозии получают следующим образом; смесь 10 г активной основы (соединение 1) 5 г неонола марки АФ-9-9 и 85 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 30-40°С в течение часа (продукт 1).

Пример 5.

Ингибитор коррозии получают следующим образом; смесь 20 г активной основы (соединение 1), 4 г неонола марки АФ-9-10 и 85 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 40-45°С в течение часа (продукт 2).

Пример 6.

Ингибитор коррозии получают следующим образом; смесь 12 г активной основы (соединение 1), 5 г неонола марки АФ-9-10 и 90 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 40-45°С в течение часа (продукт 3).

Пример 7.

Ингибитор коррозии получают следующим образом; смесь 10 г активной основы (соединение 2), 5 г неонола марки АФ-9-9 и 85 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 30-40°С в течение часа (продукт 4).

Пример 8.

Ингибитор коррозии получают следующим образом; смесь 20 г активной основы (соединение 2), 4 г неонола марки АФ-9-10 и 85 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 40-45°С в течение часа (продукт 5).

Пример 9.

Ингибитор коррозии получают следующим образом; смесь 12 г активной основы (соединение 2), 5 г неонола марки АФ-9-10 и 90 г растворителя (кубовые остатки бутиловых спиртов) перемешивают при температуре 40-45°С в течение часа (продукт 6).

В таблице 2 представлены результаты испытаний продуктов - ингибиторов коррозии на защитную активность. Исследования проводили по методике, описанной в примере 3.

Таким образом, заявленные соединения обладают защитной способностью, и полученные результаты свидетельствуют о перспективности использования производных имидазолинонов в качестве активной основы для ингибиторов коррозии.

Похожие патенты RU2706927C1

название год авторы номер документа
Ингибитор коррозии 2023
  • Бикташева Анастасия Рамильевна
  • Мухамедзянов Радик Рамилевич
  • Салов Александр Сергеевич
  • Аминова Альфия Фатыховна
  • Буйлова Евгения Андреевна
RU2806401C1
ИНГИБИТОР КОРРОЗИИ 2018
  • Мазитова Алия Карамовна
  • Аминова Гулия Карамовна
  • Даминов Рустам Римович
  • Буйлова Евгения Андреевна
  • Недопекин Денис Викторович
RU2699215C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРОВ КОРРОЗИИ 2008
  • Рысаев Урал Шакирович
  • Загидуллин Раис Нуриевич
  • Рысаев Дамир Уралович
  • Дмитриева Татьяна Геннадьевна
  • Абдрахманова Эмилия Наильевна
  • Аминова Гулия Карамовна
RU2394941C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРОВ КОРРОЗИИ 2008
  • Загидуллин Раис Нуриевич
  • Рысаев Урал Шакирович
  • Рысаев Дамир Уралович
  • Дмитриева Татьяна Геннадьевна
  • Абдрахманова Эмилия Наильевна
  • Аминова Гулия Карамовна
RU2394817C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ 2006
  • Загидуллин Раис Нуриевич
  • Муратов Марат Мансафович
  • Адаменко Александр Анатольевич
  • Семенова Любовь Георгиевна
RU2326990C2
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРОВ КОРРОЗИИ ДЛЯ НЕФТЕПРОМЫСЛОВЫХ, МИНЕРАЛИЗОВАННЫХ И СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕД 2006
  • Загидуллин Раис Нуриевич
  • Муратов Марат Мансафович
  • Кургаева Светлана Николаевна
  • Нафикова Райля Фаатовна
  • Адаменко Александр Анатольевич
RU2316615C1
ИНГИБИТОР СЕРОВОДОРОДНОЙ И УГЛЕКИСЛОТНОЙ КОРРОЗИИ В МИНЕРАЛИЗОВАННЫХ ВОДНЫХ СРЕДАХ 2015
  • Нигъматуллин Марат Махмутович
  • Кузнецов Александр Викторович
  • Гаврилов Виктор Владимирович
  • Адыгамов Вакиль Салимович
  • Сагдиев Нияз Равильевич
RU2579848C1
СПОСОБ ПОЛУЧЕНИЯ ПРОДУКТА ВЗАИМОДЕЙСТВИЯ НЕФТЕПРОДУКТА С АЗОТНОЙ КИСЛОТОЙ И ВОЗДУХОМ, ПРОЯВЛЯЮЩЕГО АНТИКОРРОЗИОННЫЕ СВОЙСТВА, И СОСТАВ ИНГИБИТОРА КОРРОЗИИ 2003
  • Фахрутдинов Р.З.
  • Ермаков Р.Д.
  • Фахрутдинов Б.Р.
  • Терентьева Н.А.
  • Дияров И.Н.
  • Хватова Л.К.
  • Брадельщикова Т.А.
  • Варнавская О.А.
  • Захватов В.А.
  • Хуснуллин М.Г.
  • Лебедев Н.А.
  • Хлебников В.Н.
  • Вахитов Р.М.
RU2235807C1
СОСТАВ ДЛЯ ЗАЩИТЫ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ СЕРОВОДОРОДНОЙ И УГЛЕКИСЛОТНОЙ КОРРОЗИИ 2000
  • Варнавская О.А.
  • Хватова Л.К.
  • Брадельщикова Т.А.
  • Лебедев Н.А.
  • Хлебников В.Н.
  • Шаяхметов Д.К.
  • Хуснуллин М.Г.
  • Магалимов А.Ф.
  • Жеребцов Е.П.
RU2166001C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КИСЛОТНОЙ КОРРОЗИИ - БАКТЕРИЦИДА 2002
  • Пантелеева А.Р.
  • Тишанкина Р.Ф.
  • Тимофеева И.В.
  • Тишанкина И.В.
  • Бадриева Г.Г.
  • Улахович С.В.
RU2206636C1

Реферат патента 2019 года ИНГИБИТОР КОРРОЗИИ

Изобретение относится к области защиты металлов от коррозии и может быть использовано для защиты газо- и нефтепромыслового оборудования и трубопроводов транспортировки нефти, работающих в высокоминерализованных сероводородсодержащих средах. Ингибитор коррозии содержит в качестве активной основы производные имидазолинонов общей формулы

,

где R - С6Н5 (1), С6Н4ОСН3 (2). Техническим результатом является расширение ассортимента ингибиторов коррозии. 2 табл., 9 пр.

Формула изобретения RU 2 706 927 C1

Ингибитор коррозии, содержащий в качестве активной основы пятичленные азотсодержащие гетероциклические соединения общей формулы

,

где R - С6Н5 (1), С6Н4ОСН3 (2)

Документы, цитированные в отчете о поиске Патент 2019 года RU2706927C1

СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРОВ КОРРОЗИИ 2008
  • Загидуллин Раис Нуриевич
  • Рысаев Урал Шакирович
  • Рысаев Дамир Уралович
  • Дмитриева Татьяна Геннадьевна
  • Абдрахманова Эмилия Наильевна
  • Аминова Гулия Карамовна
RU2394817C1
ИНГИБИТОР КОРРОЗИИ В ВОДОНЕФТЯНЫХ СРЕДАХ 1998
  • Тудрий Г.А.
  • Рябинина Н.И.
  • Назмутдинова А.С.
  • Чернова В.Д.
  • Иванова Н.Р.
  • Борисова Н.В.
RU2141542C1
ИНГИБИТОР КОРРОЗИИ В СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ 2008
  • Морозов Юрий Дмитриевич
  • Молодкин Сергей Витальевич
  • Калимуллин Альберт Ахметович
  • Сафонов Евгений Николаевич
RU2405861C2
Приспособление к ватерам для определения натяжения нити 1930
  • Садов М.В.
SU21007A1

RU 2 706 927 C1

Авторы

Мазитова Алия Карамовна

Могучев Александр Иванович

Даминов Рустам Римович

Буйлова Евгения Андреевна

Аглиуллин Ахтям Халимович

Даты

2019-11-21Публикация

2019-04-24Подача