Способ переработки бокситов Российский патент 2019 года по МПК C01F7/06 C01F7/14 C22B3/12 

Описание патента на изобретение RU2707223C1

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов по схеме Байера.

Известен способ получения глинозема из боксита, включающий смешение боксита с щелочно-алюминатным раствором, выщелачивание боксита в автоклавах при температуре 140-250°С в течение 1-2 ч с получением алюминатного раствора с концентрацией щелочи 150-200 г/л Na2Ok и каустическим модулем в конечном алюминатном растворе на 0,03-0,10 единиц выше его равновесного уровня в принятых условиях выщелачивания, отделение шлама от алюминатного раствора, разложение алюминатного раствора с получением гидроксида алюминия и маточного раствора, при этом щелочно-алюминатный раствор получают упариванием маточного раствора, смешением шлама, полученного после выщелачивания боксита в автоклавах с упаренным маточным раствором с концентрацией щелочи 160-260 г/л Na2Ok и каустическим модулем 2,6-3,2, выдержку при температуре 98-110°С, отделением шлама от алюминатного раствора. Степень извлечения глинозема составляет 92,5% (Патент RU 2226174, МПК C01F 7/06, 2004 год).

Недостатком известного способа является наличие технологической операции, связанной с приготовлением пульты из маточного раствора и шлама и ее выщелачиванием, что усложняет технологический процесс производства и требует установки дополнительного бакового оборудования.

Известен способ получения оксида алюминия из средне- и низкосортного боксита, который включает добавление в боксит оборотного маточного раствора и деалюминированного остатка, содержащего трехкальциевый гидроалюминат и кремнезем, полученного путем разделения суспензии после переработки красного шлама с добавлением в нее извести, автоклавное выщелачивание по способу Байера с получением суспензии, которую разделяют с получением раствора алюмината натрия и красного шлама, раствор алюмината натрия далее перерабатывают с получением маточного раствора и оксида алюминия (патент RU 2478574, МПК C01F 7/06, 2011 год).

Недостатком известного способа является необходимость введения в технологию отдельного передела по производству трехкальциевого гидроалюмината, который используют в качестве добавки при выщелачивании. Кроме того, способ обеспечивает относительно невысокую степень выщелачивания (не более 80%).

Наиболее близким по технической сущности является способ получения глинозема из бокситов, включающий добавление к бокситу оборотного раствора процесса Байера и извести, предварительно обожженной при температуре 1400 – 1500°С, автоклавное выщелачивание в две стадии: сначала при температуре 90-95°С, а затем при температуре 220°С, с последующим разбавлением и перемешиванием полученной пульпы при температуре 98-100оС. Способ обеспечивает извлечение оксида алюминия до 92% (Бибанаева С.А., Сабирзянов Н.А., Корюков В.Н., Уфимцев В.М., Абакумов С.А. “Технология получение извести и использование ее при производстве глинозема”, “Естественные и технические науки”, № 5, 2014)(прототип).

Однако известный способ обеспечивает возможность переработки на глинозем с высокой степенью извлечения только хорошо вскрывающихся бокситов гиббситового или гиббсит-бемитового типа, к которым в частности относятся бокситы Тиманского месторождения. При переработки известным способом на глинозем трудно вскрываемых бокситов степень извлечения составляет не более 92%.

Таким образом, перед авторами стояла задача разработать способ переработки, трудно вскрываемых бокситов диаспор или диаспор-бемитового типа обеспечивающим высокую степень извлечения оксида алюминия.

Поставленная задача решена в предлагаемом способе переработки бокситов, включающем добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание, с отделением алюминатного раствора после выщелачивания, в котором обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С.

В настоящее время из патентной и научно-технической литературы не известен способ переработки бокситов с извлечением оксида алюминия с использованием обожженной при 1200-1300°С извести в количестве 12-14 масс.% от массы боксита и проведении стадии выщелачивания в предлагаемых авторами условиях.

В настоящее время производство глинозема (оксида алюминия) осуществляется преимущественно из бокситов гиббситового или гиббсит-бемитового типа. Однако в РФ основные запасы бокситов, находящиеся на Урале, относятся к трудно вскрываемым бокситам диаспорового или диаспор-бемитового типа. Таким образом, является актуальной задача разработки способа извлечения оксида алюминия из бокситов этого типа с обеспечением высокого процента извлечения. Проведенные авторами исследования позволили определить условия и параметры проведения технологического процесса, обеспечивающего высокое извлечение оксида алюминия (до 94%). Использование извести, обожженной при температуре 1200-1300°С, объясняется изменением химических свойств извести (оксида кальция) под влиянием высоких температур. При температурах обжига выше 1300°С происходит изменение параметров кристаллической решетки в сторону уменьшения, в результате чего повышается прочность кристаллической решетки и снижается реакционная способность оксида кальция. Предлагаемый авторами температурный интервал предварительного обжига извести является оптимальным, обеспечивая максимальную реакционную способность извести для активации процесса вскрытия трудно вскрываемых бокситов. При использовании извести, обожженной ниже 1200°С, в количестве менее 12 масс.% от массы боксита степень выщелачивания не превышала 87%, при использовании извести, обожженной выше 1300°С, в количестве более 14 масс.% от массы боксита степень выщелачивания не превышала 88%. Существенными являются параметры проведения процесса выщелачивания, обеспечивающие разложения и перевода в раствор максимально возможного количества оксида алюминия. Выщелачивание осуществляли при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 МПа и температуре 230-235°С. Жесткие условия процесса обусловлены минералогическим составом бокситов диаспорового или диаспор-бемитового типа, который осложняет вскрытие сырья по сравнению с другими глиноземсодержащими минералами. Так, при снижении соотношения жидкое : твердое, менее 3.0:1, снижении давления ниже 30атм и температуры ниже 230 степень извлечения оксида алюминия в раствор снижается до 86-87%, при повышении соотношения жидкое : твердое, более 3.5:1, при повышении давления выше 32атм и температур выше 235° степень извлечения оксида алюминия в раствор также снижается до 88%. Предлагаемый способ позволяет упростить технологический процесс, поскольку позволяет исключить дополнительное предварительное низкотемпературное выщелачивание.

Предлагаемый способ может быть осуществлен следующим образом. Осуществляют автоклавное выщелачивание “сырой” пульпы, полученной путем добавления в боксит, в частности в боксит Северо-уральского месторождения, оборотного раствора и обожженной при температуре 1200-1300°С извести в количестве 12-14 масс.% от массы боксита. Выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С, в течение 2-2,5 часов. Затем отключают нагрев, охлаждают автоклав до комнатной температуры и открывают. Полученный продукт фильтруют. Алюминатный раствор помещают в отдельную емкость. Проводят химический анализ алюминатного раствора с целью определения содержания алюминия, натрия, кремния и железа. Определяют извлечение оксида алюминия в раствор. Определяют извлечение по формуле: Вхим= 1- (Ашл*Feб/ Аб *Feшл)*100, где Аб и Fб - содержание Al2O3 и Fe2O3 в боксите, % и Ашл и Fшл - содержание Al2O3 и Fe2O3 в шламе, %. Кремневый модуль определяют по формуле: µSi= Al2O3/ SiO2, где Al2O3 и SiO2 –содержание алюминия и кремния в алюминатном растворе, г/л.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Масса навески 15 г. Берут 13,2 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 1,8г (12% масс.) отожженной при температуре 1200°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 30атм, включают нагрев до температуры 230°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028, кремневый модуль – 528, степень выщелачивания составила 94%.

Пример 2. Масса навески 15 г. Берут 12,9 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 2,1 г (14% масс.) отожженной при температуре 1300°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 32атм, включают нагрев до температуры 235°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028 , кремневый модуль – 528, степень выщелачивания составила 94%.

Таким образом, авторами предлагается простой, эффективный способ извлечения оксида алюминия в раствор из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера, обеспечивающий высокое извлечение равное 94%, высокий кремневый модуль и низкое содержание железа в алюминатном растворе.

Похожие патенты RU2707223C1

название год авторы номер документа
СПОСОБ ГИДРОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ АЛЮМОСИЛИКАТНОГО СЫРЬЯ 2014
  • Ахмедов Сергей Норматович
  • Медведев Виктор Владимирович
RU2585648C2
СПОСОБ ОБЕСКРЕМНИВАНИЯ АЛЮМИНАТНЫХ РАСТВОРОВ 2008
  • Бибанаева Светлана Александровна
  • Кононенко Владимир Иванович
  • Корюков Владимир Николаевич
  • Лебедев Владимир Александрович
  • Уфимцев Владислав Михайлович
RU2374179C2
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2019
  • Дубовиков Олег Александрович
  • Рис Александра Дмитриевна
  • Сундуров Александр Владимирович
  • Куртенков Роман Владимирович
RU2727389C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 1999
  • Майер А.А.
  • Лапин А.А.
  • Тихонов Н.Н.
  • Паромова И.В.
  • Матукайтис А.А.
RU2181695C2
СПОСОБ ПРОИЗВОДСТВА ГЛИНОЗЕМА ИЗ СИДЕРИТИЗИРОВАННОГО БОКСИТА ПО МЕТОДУ БАЙЕРА 1996
  • Паромова И.В.
  • Майер А.А.
  • Сусс А.Г.
  • Матукайтис А.А.
  • Барбакадзе Л.Г.
RU2096327C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2012
  • Логинова Ирина Викторовна
  • Логинов Юрий Николаевич
  • Кырчиков Алексей Владимирович
RU2494965C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 2003
  • Логинова И.В.
  • Логинов Ю.Н.
  • Ордон С.Ф.
  • Лебедев В.А.
RU2232716C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ 2006
  • Липин Вадим Аполлонович
  • Сизяков Виктор Михайлович
  • Аминов Сибагатулла Нуруллович
  • Липухин Евгений Антонович
  • Гордин Олег Гурьевич
  • Клатт Анатолий Августович
  • Николаева Елена Александровна
RU2313490C1
Способ переработки бокситов 2020
  • Бибанаева Светлана Александровна
  • Пасечник Лилия Александровна
  • Скачков Владимир Михайлович
  • Яценко Сергей Павлович
  • Сабирзянов Наиль Аделевич
RU2741030C1
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2003
  • Киселев А.И.
  • Тесля В.Г.
  • Насыров Г.З.
  • Смирнов В.С.
  • Иванушкин Николай Анатольевич
  • Жмурков Владимир Владимирович
RU2254295C2

Реферат патента 2019 года Способ переработки бокситов

Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С. Предложенный способ обеспечивает извлечение оксида алюминия в раствор, равное 94%, из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера. Кроме того, способ позволяет получать алюминатные растворы с низким содержанием кремния и железа. 2 пр.

Формула изобретения RU 2 707 223 C1

Способ переработки бокситов, включающий добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание с отделением алюминатного раствора после выщелачивания, отличающийся тем, что обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2707223C1

БИБАНАЕВА С.А
и др., Технология получения извести и использование ее при производстве глинозема, Естественнные и технические науки, 2014, N5, С
Способ получения суррогата олифы 1922
  • Чиликин М.М.
SU164A1
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА ИЗ БОКСИТА 2002
  • Насыров Г.З.
  • Тесля В.Г.
  • Тихонов Н.Н.
  • Лапин А.А.
  • Чжен В.А.
  • Броневой В.А.
RU2226174C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТА 1998
  • Копытов Г.Г.
  • Аминов А.Н.
  • Чернабук Ю.Н.
  • Круглов В.С.
RU2158222C2
СПОСОБ ИЗВЛЕЧЕНИЯ ОКСИДА АЛЮМИНИЯ ИЗ КРАСНОГО ШЛАМА 2013
  • Пасечник Лилия Александровна
  • Скачков Владимир Михайлович
  • Яценко Сергей Павлович
  • Вайлерт Андрей Викторович
  • Скрябнева Лидия Михайловна
RU2561417C2
US 3944648 A1, 16.03.1976.

RU 2 707 223 C1

Авторы

Бибанаева Светлана Алексадровна

Сабирзянов Наиль Аделевич

Даты

2019-11-25Публикация

2019-05-15Подача