Способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей Российский патент 2019 года по МПК C07K7/06 C07F13/00 A61K51/08 A61K103/10 A61K38/08 A61P35/00 

Описание патента на изобретение RU2708076C1

Изобретение относится к области фармацевтической химии, а именно к получению радиофармацевтических лекарственных препаратов медицинского назначения для радионуклидной диагностики нейроэндокринных опухолей.

Известен способ получения комплекса технеция-99м с октреотидом для диагностики нейроэндокринных опухолей [RU 2655392 C1, МПК (2006.01) C07K 7/06, C07F 13/00, A61K 51/08, A61K 103/10, опубл. 28.05.2018], выбранный в качестве прототипа, включающий модификацию октреотида хелатирующим агентом сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино)гексаноат в среде диметилформамида в присутствии триэтиламина при комнатной температуре в течение не менее 24 ч при перемешивании, очистку полученного раствора полупрепаративно, используя жидкостную хроматографию, проведение методом лиофилизации отгонки летучих растворителей и высушивания, добавление к DPAH-модифицированному октреотиду, цитрата натрия и олова (II) дихлорида дигидрата, смешивание их, получение жидкого реагента, который стерилизуют фильтрацией и лиофилизируют с предварительной заморозкой до -50°С, добавление к полученному лиофилизату натрия пертехнетата с концентрацией технеция-99м 1 ГБк/мл и инкубирование в течение не менее 30 мин при комнатной температуре.

Выход DPAH-модифицированного октреотида (DPAH-октреотида) составляет 60,15%, а радиохимическая чистота готового продукта (комплекса технеция-99м с DPAH-октреотидом) составляет 96,2%.

При получении DPAH-модифицированного октреотида проводится прямая модификация октреотида хелатирующим агентом путем образования амидной связи. В данном случае реакция не является специфичной, поскольку в структуре октреотида можно выделить помимо целевой амино-группы D-фенилаланина, также амино-группу L-лизина, которая более доступна для образования амидной связи. Следовательно, невысокий выход в данном способе объясняется образованием побочного продукта.

При получении комплекса технеция-99м с DPAH-модифицированным октреотидом для диагностики нейроэндокринных опухолей при взаимодействии семивалентного технеция-99м с двухвалентным оловом в водной среде происходит образование технеция четырех и пятивалентого, для прочного связывания которого пригодны хелатные группы N2S2,, N3S1, N1S3, и т.д. Тридентантный (N3) хелатирующий агент DPAH не способен прочно связывать технеций-99м указанной валентности, и комплекс разрушается при разбавлении его водой, физиологическим раствором, буферными растворами и т.д., что делает его применение ограниченным для биологических исследований in vitro/ in vivo по сроку годности.

Технический результат, на решение которого направлено предлагаемое изобретение, заключается в разработке способа получения комплекса технеция-99м для диагностики нейроэндокринных опухолей, позволяющего повысить радиохимическую чистоту получаемого продукта.

Предложенный способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей, также как в прототипе, включает модификацию октреотида хелатирующим агентом сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноатом в среде диметилформамида в присутствии триэтиламина при перемешивании при комнатной температуре, очистку полученного раствора полупрепаративно, используя жидкостную хроматографию, проведение методом лиофилизации отгонки летучих растворителей и высушивание, связывание полученного реагента с технецием-99м с активностью 1 ГБк и инкубирование.

Согласно изобретению сначала смешивают фосфатно-буферный раствор октреотида с рН 7,5–9,0 и раствор ацетонитрила, содержащий 9-флуоренилметилоксикарбонилхлорид (Fmoc-Cl), в мольном соотношении 1:1–1,2, перемешивают в течение 15–60 мин при температуре 20–60°С, проводят очистку полупрепаративно жидкостной хроматографией. Фракции, соответствующие Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют. Затем полученный Fmoc-(L-Lys)-октреотид растворяют в диметилформамиде и добавляют сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноат в присутствии триэтиламина, перемешивают и инкубируют в течение 6–10 часов, проводят очистку полупрепаративно жидкостной хроматографией. Фракции, соответствующие DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют. Полученный DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотид гидролизуют, растворяя его в смеси диметилформамида и пиперидина в течение не менее 30 мин при комнатной температуре, проводят очистку полупрепаративно жидкостной хроматографией и лиофилизируют. К полученному DPAH-(D-Phe)-октреотиду добавляют раствор карбонильного технеция-99м с активностью технеция-99м 1 ГБк. Смесь инкубируют при 40°С в течение 60 мин, проводят твердофазную экстракцию, элюируют этанолом, разбавляют раствором натрия хлорида.

Полученный комплекс технеция-99м с DPAH-октреотидом имеет следующую формулу

DPAH-октреотид синтезируют с применением подхода Fmoc-защиты нецелевой аминогруппы L-лизина. Оптимальным для достижения высоких выходов является на первой стадии использование сред с рН 7,5-9,0 и мольного соотношения октреотида и реагентов 1:1–1,2 поскольку отклонение этих параметров приводит к защите другой целевой амино-группы в D-фенилаланине. На второй стадии оптимальным является время реакции 6–10 часов для образования амидной связи, уменьшение времени реакции приводит к снижению выхода целевого продукта, увеличение времени реакции существенно не влияет на выход.

Использование карбонильного технеция-99-м [99mTc(H2O)3(CO)3]+способствует образованию прочных связей в полученном комплексе, что перспективно для широкого использования при производстве лекарственных радиофармпрепартов.

Предлагаемый способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей позволяет получать DPAH-модифицированный октреотид с выходом до 90,2%, а также стабильный комплекс технеция-99м с производным октреотида (готовый продукт) с высокой радиохимической чистотой - 98%.

Технический результат предлагаемого изобретения состоит в повышении радиохимической чистоты комплекса технеция-99м с DPAH-модифицированным октреотидом. Кроме того, повышен выход DPAH-модифицированного октреотида, что позволяет использовать его в большем количестве для получения комплекса технеция-99м, что в свою очередь приводит к удешевлению получаемого продукта.

На фиг. 1 представлена ВЭЖ-хроматограмма Fmoc-(L-Lys)-октреотида.

На фиг. 2 показан масс-спектр полученного Fmoc-(L-Lys)-октреотида.

На фиг. 3 представлена вэж хроматограмма DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

На фиг. 4 показан масс-спектр (M+H+) DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

На фиг. 5 представлена вэж хроматограмма DPAH-(D-Phe)-октреотида.

На фиг. 6 показан масс-спектр DPAH-(D-Phe)-октреотида.

Пример 1. Синтез Fmoc-(L-Lys)-октреотида.

9,8⋅10-3 ммоль (10 мг) октреотида (производитель АО «Фарм-синтез») растворили в 1 мл 100 ммоль фосфатно-буферного раствора (рН=8,4), добавили 10,8⋅10-3 ммоль (2,8 мг) 9-флуоренилметилоксикарбонилхлорида (Fmoc-Cl, Arcos organics) в 1 мл ацетонитрила, перемешивали и инкубировали при температуре 60°С в течение 30 минут. Контроль за ходом реакции осуществляли по аналитической ВЭЖ-хроматограмме, представленной на фиг. 1 (tR = 19,119 мин, система ВЭЖХ Ultimate 3000, колонка С18(2) Luna 5 мкм, 100 А°, 250×4.6 мм, градиент концентрации: 0 мин 100% A (0% B), 5 мин 80% A (20% B), 10 мин 65% A (35% B), 15 мин 50% A (50% B), 25 мин 20% A (80% B), 30 мин 0% A (100% B), 32 мин 95% A (5% B), где система А – 0,1% TFA и система Б – 0,1% TFA/ацетонитрил, скорость потока 1 мл/мин). Очистку продукта проводили полупрепаративной ВЭЖХ (система ВЭЖХ Ultimate 3000, колонка С18(2) Luna 10 мкм, 100 А°, 250×10 мм, градиент концентрации 0 мин 100% A (0% B), 5 мин 80% A (20% B), 10 мин 65% A (35% B), 15 мин 50% A (50% B), 25 мин 20% A (80% B), 30 мин 0% A (100% B), 32 мин 95% A (5% B), где система А – 0,1% TFA и система Б – 0,1% TFA/ацетонитрил, скорость потока 12 мл/мин). Фракции, соответствующие Fmoc-(L-Lys)-октреотида, объединили и лиофилизировали. Выход продукта после очистки составил 90,1 %, m/z 1241,5. Масс-спектр Fmoc-(L-Lys)-октреотида представлен на фиг. 2.

Пример 2. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили также, как и в примере 1 с тем отличием, что добавляли Fmoc-Cl в количестве 12,7⋅10-3 ммоль (3,3 мг). Выход продукта составил 71,1%.

Пример 3. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили также, как и в примере 1 с тем отличием, что добавляли Fmoc-Cl в количестве 9,8⋅10-3 ммоль (2,6 мг). Выход продукта составил 84,2 %.

Пример 4. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что использовали фосфатно-буферный раствор с рН=7,5. Выход продукта составил 85,2%.

Пример 5. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что использовали фосфатно-буферный раствор с рН=9,0. Выход продукта составил 90,2%.

Пример 6. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что смесь перемешивали и инкубировали при температуре 20°С. Выход продукта составил 85,1%.

Пример 7. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что смесь перемешивали и инкубировали при температуре 40°С. Выход продукта составил 89,1%.

Пример 8. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что смесь перемешивали и инкубировали 15 минут. Выход продукта составил 75,2 %.

Пример 9. Синтез Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 1 с тем отличием, что смесь перемешивали и инкубировали 45 минут. Выход продукта составил 90,1%.

Пример 10. Синтез DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

4⋅10-3 ммоль (5 мг) Fmoc-(L-Lys)-октреотида растворили в 1 мл диметилформамида, добавили 10 мкл триэтиламина, 8⋅10-3 ммоль (3,3 мг) сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноата, перемешивали и инкубировали при комнатной температуре 6 часов. Контроль за ходом реакции осуществляли по аналитической ВЭЖ-хроматограмме, представленной на фиг. 3 (tR = 19,157 мин, условия примера 1). Очистку продукта проводили полупрепаративной ВЭЖХ (условия примера 1). Фракции, соответствующие DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотиду, объединяли и лиофилизировали. Выход продукта после очистки составил 92,2% (чистота более 99%), m/z 1536,3. Масс-спектр (M+H+) DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида представлен на фиг. 4.

Пример 11. Синтез DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 10 с тем отличием, что время инкубации составило 8 часов. Выход продукта составил 92,0%.

Пример 12. Синтез DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 10 с тем отличием, что время инкубации составило 10 часов. Выход продукта составил 92,0%.

Пример 13. Синтез DPAH-октреотида путем гидролиза DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

2,6⋅10-3 ммоль (4 мг) DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида растворили в 400 мкл диметилформамида, добавили 100 мкл пиперидина, смесь инкубировали при комнатной температуре 30 мин. Контроль за ходом реакции осуществляли по аналитической ВЭЖ-хроматограмме, представленной на фиг. 5 (tR = 14,300 мин, условия примера 1). Очистку продукта проводили полупрепаративной ВЭЖХ (условия примера 1). Фракции, соответствующие DPAH-(D-Phe)-октреотиду, объединяли и лиофилизировали. Выход продукта после очистки составил 91,2%, m/z 1314,4. Масс-спектр DPAH-(D-Phe)-октреотида представлен на фиг. 6.

Пример 14. Синтез DPAH-октреотида путем гидролиза DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотида.

Реакционную смесь готовили так же, как и в примере 19 с тем отличием, что время инкубации составило 45 минут. Выход продукта составил 91,2%.

Пример 15. Получение комплекса технецием-99м [99mTc(H2O)3(CO)3]+ с DPAH-октреотидом.

Во флакон, содержащий 100 мкг DPAH-октреотида, полученного в примере 13, добавляли 1 мл раствора карбонильного технеция-99м [99mTc(H2O)3(CO)3]+ активностью 1 ГБк, смесь инкубировали при 40°С в течение 60 мин. Очистку проводили, используя картридж Sep-Pak C18 (360 мг), предварительно промытый 10 мл этанола, 10 мл воды; полученный комплекс технеция-99м с DPAH-(D-Phe)-октреотидом (DPAH-модифицированным октреотидом) элюировали 1 мл этанола и разбавляли 9 мл 0,9% раствора натрия хлорида.

Радиохимическая чистота комплекса технеция-99м с DPAH-модифицированным октреотидом составила 98,0%.

Похожие патенты RU2708076C1

название год авторы номер документа
Способ получения комплекса технеция-99м с октреотидом для диагностики нейроэндокринных опухолей 2017
  • Стасюк Елена Сергеевна
  • Нестеров Евгений Александрович
  • Скуридин Виктор Сергеевич
  • Ларькина Мария Сергеевна
  • Брагина Ольга Дмитриевна
  • Юсубов Мехман Сулейман Оглы
  • Варламова Наталья Валерьевна
  • Садкин Владимир Леонидович
  • Ильина Екатерина Алексеевна
  • Рогов Александр Сергеевич
  • Подрезова Екатерина Владимировна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Белоусов Михаил Валерьевич
  • Кривощеков Сергей Владимирович
RU2655392C1
Способ получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения для диагностики/лечения рака предстательной железы 2018
  • Ларькина Мария Сергеевна
  • Юсубов Мехман Сулейманоглы
  • Белоусов Михаил Валерьевич
  • Подрезова Екатерина Владимировна
  • Кривощеков Сергей Владимирович
  • Яновская Елена Анатольевна
  • Гурто Роман Владимирович
  • Мажуга Александр Георгиевич
  • Мачулкин Алексей Эдуардович
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Брагина Ольга Дмитриевна
  • Синилкин Иван Геннадьевич
RU2692126C1
Способ получения комплекса технеция-99м с рекомбинантными адресными молекулами белковой природы для радионуклидной диагностики онкологических заболеваний с гиперэкспрессией HER-2/neu 2018
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Брагина Ольга Дмитриевна
  • Синилкин Иван Геннадьевич
  • Скуридин Виктор Сергеевич
  • Стасюк Елена Сергеевна
  • Тагирова Екатерина Алексеевна
  • Юсубов Мехман Сулейманоглы
  • Белоусов Михаил Валерьевич
  • Ларькина Мария Сергеевна
  • Подрезова Екатерина Владимировна
RU2684289C1
КОМПЛЕКС ТЕХНЕЦИЯ-99М С РЕКОМБИНАНТНЫМИ АДРЕСНЫМИ МОЛЕКУЛАМИ БЕЛКОВОЙ ПРИРОДЫ С АНКИРИНОВЫМИ ПОВТОРАМИ ДЛЯ РАДИОНУКЛИДНОЙ ДИАГНОСТИКИ ЗЛОКАЧЕСТВЕННЫХ ОБРАЗОВАНИЙ С ГИПЕРЭКСПРЕССИЕЙ HER2/NEU И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2023
  • Толмачев Владимир Максимилианович
  • Ларькина Мария Сергеевна
  • Плотников Евгений Владимирович
  • Воробьева Анжелика Григорьевна
  • Орлова Анна Марковна
  • Белоусов Михаил Валерьевич
  • Деев Сергей Михайлович
  • Шульга Алексей Анатольевич
  • Коновалова Елена Валерьевна
  • Чернов Владимир Иванович
  • Юсубов Мехман Сулейман Оглы
  • Зельчан Роман Владимирович
  • Брагина Ольга Дмитриевна
  • Юлдашева Феруза Шерзод Кизи
  • Фоминых Анастасия Сергеевна
  • Третьякова Мария Сергеевна
  • Безверхняя Екатерина Александровна
RU2812633C1
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА НА ОСНОВЕ 1-ТИО -D-ГЛЮКОЗЫ ДЛЯ ИЗГОТОВЛЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99м РАДИОФАРМАЦЕВТИЧЕСКОГО ПРЕПАРАТА И СПОСОБ ИЗГОТОВЛЕНИЯ МЕЧЕННОГО ТЕХНЕЦИЕМ-99м РАДИОФАРМАЦЕВТИЧЕСКОГО ПРЕПАРАТА 2023
  • Нестеров Евгений Александрович
  • Стасюк Елена Сергеевна
  • Скуридин Виктор Сергеевич
  • Зельчан Роман Владимирович
  • Чернов Владимир Иванович
  • Медведева Анна Александровна
  • Садкин Владимир Леонидович
  • Шелихова Елена Александровна
  • Рогов Александр Сергеевич
  • Бугаев Дмитрий Петрович
  • Чикова Ирина Владимировна
  • Доняева Елена Сергеевна
  • Ушаков Иван Алексеевич
RU2824623C1
Состав и способ получения реагента для радионуклидной диагностики на основе меченной технецием-99m 1-тио-D-глюкозы 2016
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Брагина Ольга Дмитриевна
  • Синилкин Иван Геннадьевич
  • Чойнзонов Евгений Лхамацыренович
  • Скуридин Виктор Сергеевич
  • Стасюк Елена Сергеевна
  • Ильина Екатерина Алексеевна
  • Рогов Александр Сергеевич
  • Нестеров Евгений Александрович
  • Ларионова Людмила Александровна
  • Варламова Наталья Валерьевна
  • Садкин Владимир Леонидович
RU2644744C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА ТЕХНЕЦИЯ-99М С МОДИФИЦИРОВАННЫМИ СПЕЦИФИЧНЫМИ МИНИ-АНТИТЕЛАМИ ДЛЯ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ С ГИПЕРЭКСПРЕССИЕЙ HER2/NEU 2016
  • Юсубов Мехман Сулейман Оглы
  • Белоусов Михаил Валерьевич
  • Ларькина Мария Сергеевна
  • Гурьев Артем Михайлович
  • Подрезова Екатерина Владимировна
  • Скуридин Виктор Сергеевич
  • Стасюк Елена Сергеевна
  • Чернов Владимир Иванович
  • Брагина Ольга Дмитриевна
  • Деев Сергей Михайлович
  • Зельчан Роман Владимирович
RU2655965C2
СПОСОБ И СОСТАВ ДЛЯ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ РАДИОНУКЛИДНОЙ ДИАГНОСТИКИ НА ОСНОВЕ МЕЧЕННОЙ ТЕХНЕЦИЕМ-99m 5-ТИО-D-ГЛЮКОЗЫ 2014
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Тицкая Анна Александровна
  • Синилкин Иван Геннадьевич
  • Стасюк Елена Сергеевна
  • Скуридин Виктор Сергеевич
  • Садкин Владимир Леонидович
  • Рогов Александр Сергеевич
  • Варламова Наталья Валерьевна
  • Нестеров Евгений Александрович
  • Ильина Екатерина Алексеевна
RU2568888C1
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛИЧЕСКОГО ПЕПТИДА - ОКТРЕОТИДА 2010
  • Назаренко Анна Борисовна
  • Балаев Александр Николаевич
  • Федоров Владимир Егорович
RU2435780C1
ОКТАПЕПТИД ДЛЯ ПОЛУЧЕНИЯ РАДИОФАРМАЦЕВТИЧЕСКИХ СРЕДСТВ, РАДИОФАРМАЦЕВТИЧЕСКОЕ СРЕДСТВО НА ЕГО ОСНОВЕ И СПОСОБ ДИАГНОСТИКИ ОПУХОЛЕЙ, ЭКСПРЕССИРУЮЩИХ СОМАТОСТАТИНОВЫЕ РЕЦЕПТОРЫ 2011
  • Назаренко Анна Борисовна
  • Рабинович Эдуард Зиновьевич
  • Овчинников Михаил Владимирович
  • Кодина Галина Евгеньевна
  • Брусникин Александр Борисович
RU2457215C1

Иллюстрации к изобретению RU 2 708 076 C1

Реферат патента 2019 года Способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей

Изобретение относится способу получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей, включающему смешивание фосфатно-буферного раствора октреотида с рН 7,5–9,0 и раствора ацетонитрила, содержащего 9-флуоренилметилоксикарбонилхлорид (Fmoc-Cl), в мольном соотношении 1:1–1,2, перемешивают в течение 15–60 мин при температуре 20–60°С. Проводят очистку полупрепаративно жидкостной хроматографией. Фракции, соответствующие Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют. Затем полученный Fmoc-(L-Lys)-октреотид растворяют в диметилформамиде и добавляют сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноат в присутствии триэтиламина в течение 6–10 ч при перемешивании, проводят очистку полупрепаративно жидкостной хроматографией. Фракции, соответствующие DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют. Полученный DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотид гидролизуют, растворяя его в смеси диметилформамида и пиперидина, и инкубируют в течение не менее 30 мин при комнатной температуре, проводят очистку полупрепаративно жидкостной хроматографией и лиофилизируют. К полученному DPAH-(D-Phe)-октреотиду добавляют раствор карбонильного технеция-99м с активностью технеция-99м 1 ГБк, смесь инкубируют при 40°С в течение 60 мин, проводят твердофазную экстракцию, элюируют этанолом, разбавляют раствором натрия хлорида. Технический результат - повышение выхода DPAH-модифицированного октреотида, повышение радиохимической чистоты комплекса технеция-99м с DPAH-модифицированным октреотидом. 6 ил., 15 пр.

Формула изобретения RU 2 708 076 C1

Способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей, включающий модификацию октреотида хелатирующим агентом сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноатом в среде диметилформамида в присутствии триэтиламина при перемешивании при комнатной температуре, очистку полученного раствора полупрепаративно, используя жидкостную хроматографию, проведение методом лиофилизации отгонки летучих растворителей и высушивание, связывание полученного реагента с технецием-99м с концентрацией 1 ГБк/мл и инкубирование, отличающийся тем, что смешивают фосфатно-буферный раствор октреотида с рН 7,5–9,0 и раствор ацетонитрила, содержащий 9-флуоренилметилоксикарбонилхлорида (Fmoc-Cl), в мольном соотношении 1:1–1,2, перемешивают в течение 15–60 мин при температуре 20–60°С, проводят очистку полупрепаративно жидкостной хроматографией, фракции, соответствующие Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют, затем полученный Fmoc-(L-Lys)-октреотид растворяют в диметилформамиде и добавляют сукцинимид-1-ил-6-(бис(пиридин-2-илметил)амино)гексаноат в присутствии триэтиламина при перемешивании в течение 6–10 ч, проводят очистку полупрепаративно жидкостной хроматографией, фракции, соответствующие DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотиду, объединяют и лиофилизируют; полученный DPAH-(D-Phe)-Fmoc-(L-Lys)-октреотид гидролизуют, растворяя его в смеси диметилформамида и пиперидина и инкубируют в течение не менее 30 мин при комнатной температуре, проводят очистку полупрепаративно жидкостной хроматографией и лиофилизируют, затем к полученному DPAH-(D-Phe)-октреотиду добавляют раствор карбонильного технеция-99м с активностью технеция-99м 1 ГБк, смесь инкубируют при 40°С в течение 60 мин, проводят твердофазную экстракцию, элюируют этанолом и разбавляют раствором натрия хлорида.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708076C1

Способ получения комплекса технеция-99м с октреотидом для диагностики нейроэндокринных опухолей 2017
  • Стасюк Елена Сергеевна
  • Нестеров Евгений Александрович
  • Скуридин Виктор Сергеевич
  • Ларькина Мария Сергеевна
  • Брагина Ольга Дмитриевна
  • Юсубов Мехман Сулейман Оглы
  • Варламова Наталья Валерьевна
  • Садкин Владимир Леонидович
  • Ильина Екатерина Алексеевна
  • Рогов Александр Сергеевич
  • Подрезова Екатерина Владимировна
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Белоусов Михаил Валерьевич
  • Кривощеков Сергей Владимирович
RU2655392C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИММУННОГО ПРЕПАРАТА ДЛЯ ДИАГНОСТИКИ И ТЕРАПИИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ 2013
  • Чувилин Дмитрий Юрьевич
  • Загрядский Владимир Анатольевич
  • Дубинкин Дмитрий Олегович
  • Бочагин Филипп Сергеевич
  • Панченко Владислав Яковлевич
  • Деев Сергей Михайлович
  • Головаченко Виктор Александрович
  • Решетов Игорь Владимирович
RU2537175C2
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМОГО КАРБОНИЛЬНОГО КОМПЛЕКСА КОРОТКОЖИВУЩЕГО ТЕХНЕЦИЯ-99m 2005
  • Горшков Николай Иванович
  • Лумпов Александр Александрович
  • Мирославов Александр Евгеньевич
  • Суглобов Дмитрий Николаевич
RU2294897C2
ЭЛАСТИЧНЫЙ ТРУБОПРОВОД ДЛЯ ВЕРТИКАЛЬНОЙ ПОДАЧИ 0
SU337303A1

RU 2 708 076 C1

Авторы

Ларькина Мария Сергеевна

Нестеров Евгений Александрович

Юсубов Мехман Сулейман Оглы

Белоусов Михаил Валерьевич

Стасюк Елена Сергеевна

Варламова Наталья Валерьевна

Скуридин Виктор Сергеевич

Садкин Владимир Леонидович

Рогов Александр Сергеевич

Шелихова Елена Александровна

Ларионова Людмила Александровна

Подрезова Екатерина Владимировна

Чернов Владимир Иванович

Яновская Елена Анатольевна

Кривощеков Сергей Владимирович

Даты

2019-12-04Публикация

2019-09-10Подача