Способ получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения для диагностики/лечения рака предстательной железы Российский патент 2019 года по МПК C07D401/12 C07C275/24 A61K51/04 A61K103/10 

Описание патента на изобретение RU2692126C1

Изобретение относится к фармацевтической химии, к способам получения производного мочевины с хелатным центром, тройного к простат-специфичному мембранному антигену для связывания технеция-99м/рения и может быть использовано для диагностики рака предстательной железы (РПЖ).

Рак предстательной железы (РПЖ) является одной из наиболее частых форм злокачественных образований у мужчин Северной Америки, Европы и некоторых регионов Африки: в общемировой структуре онкологической заболеваемости он занимает шестое место, а среди мужчин - третье. В России рак простаты занимает 4-е место, при этом, у 60-80% пациентов при первичном обследовании выявляются местно-распространенные формы рака или метастатическое поражение отдаленных органов и тканей. Наиболее часто используемым радионуклидом для создания радиодиагностических препаратов выступает технеций-99м (99mTc), проведение исследования с которым доступно на территории всей Российской Федерации (более 250 радиодиагностических подразделений). Главным достоинством радиофармпрепарата на основе меченной 99mTc малой высокоспецифичной синтетической молекулы является то, что визуализация опухоли предстательной железы с их использованием может быть произведена с помощью гамма-камеры, что исключает инвазивный характер исследования, значительно снижает стоимость диагностической процедуры, позволяет не только оценить распространенность опухолевого процесса (состояние первичного опухолевого узла, регионарных лимфатических узлов, а так же выявление отдаленных метастазов), но и выполнять многократные обследования с целью оценки динамики на фоне проводимого лечения.

Главной мишенью в диагностике РПЖ является ПСМА - мембранный гликопротеин II типа с глутамат-карбоксипептидазной активностью, гиперэкспрессия которого отмечается на поверхности опухолевых клеток при различных стадиях рака предстательной железы. Одним из перспективных ингибиторов ПСМА на основе коньюгатов карбамида (мочевины) с аминокислотами является соединение с химическим названием (3S,7S,25S,28S)-33-амино-25,28-дибензил-5,13,20,23,26,29-гексаоксо-4,6,12,29,24,27,30-гептаазатриоктан-1,3,7-трикарбоновая кислота (например, в виде трифторацетата) (фиг. 1). Далее по тексту данное соединение будет обозначено как Glu-urea-Lys-дифенил-ПСМА-лиганд. Ввиду своей недостаточной реакционной способности описываемый ингибитор ПСМА способен связывать 99mTc/186/188Re только путем предварительного присоединения к нему хелатирующего агента [1, 2].

В настоящее время активно разрабатываются способы получения и технологии мечения ингибиторов ПСМА технецием-99м [3, 4].

Известны способы получения производных мочевины с хелатными центрами на основе производных пиридина, тропных к ПСМА [5].

Представлены в патенте меченые ингибиторы ПСМА, их биологическое распределение и использование в качестве диагностических агентов [6]. Описание меченых ингибиторов ПСМА включает в себе изложение способов получения ингибиторов ПСМА и их коньюгатов с хелатными центрами, в том числе и с производными пиридина. Получение таких конъюгатов проводят с применением сукциимидных эфиров различных биспиридил хелаторов, которые получают в избытке дисукцимидил суберата (DSS) в диметилформамиде. К раствору ингибитора ПСМА (0,035 г, 0,107 ммоль в 0,5 мл метанола) добавляют при перемешивании при комнатной температуре в течение 10 ч сукциимидный эфир биспиридил хелатора (0,100 г, 0,107 ммоль в 6 мл диметилформамида) и 0,2 мл триэтиламина. Реакционную смесь упаривают при пониженном давлении, продукт выделяют экстракцией метиленхлоридом из водного слоя с последующей очисткой флэш-хроматографией (50/50 метанол/метиленхлорид). Далее проводят гидролиз для снятия зашиты с карбоксильных групп, используя трифторуксусную кислоту 7 мл и анизола 0,3 мл при перемешивании 10 мин, раствор выпаривают под вакуумом, промывают диэтиловым эфиром и водой. Затем грубый продукт очищают ВЭЖХ (75/25 вода (0,1% TFA)/ ацетонитрил (0,1%TFA), скорость потока 2 мл/мин). Выход составляет 65%. Данный способ получения характеризуется сложной схемой, применением токсичных растворителей, длительностью процесса, а также требует тщательную очистку от побочных продуктов и непрореагировавших реагентов. Также, в способе не предложены условия получения на основе молекулы Glu-urea-Lys-дифенил-ПСМА-лиганда.

Известен способ получения комплексов технеция и рения с бис(гетероарилами) и способы их использования как ингибиторов ПСМА [7]. В патенте также первоначально указаны способы получения ряда производных мочевины, в том числе в качестве гетероарилов представлены производные пиридина (фиг. 2). В работе не изложены детальные описания способов получения соединений, однако указано, что присоединение хелатирующего агента с гетероциклическими или алифатическими донорными группами проводится с помощью реактива HATU (2-(1Н-7-Азабензотриазол-1-ил)-1,1,3,3-тетраметил уроний гексафторфосфат метанамин) в присутствии триэтиламина (фиг. 3). При этом защита на карбоксильных группах первоначально сохранена. Снятие защиты происходит в жестких условиях после мечения рением или технецием, что является трудоемким процессом, снижающим выходы целевых продуктов и непригодно для будущего применения в клинике. Выходы составляют от 20 до 50%. Также, в способе не предложены условия получения на основе молекулы Glu-urea-Lys-дифенил-ПСМА-лиганда.

Представлены три способа получения меченых ингибиторов ПСМА, их биологическое распределение и использование в качестве диагностических агентов [8-10]. Различные 99mTc/Re-меченые соединения получали путем присоединения известных хелатирующих агентов Tc/Re к аминофункциональному ингибитору PSMA с или без применения линкера с переменной длиной. В том числе описаны способы получения синтетической молекулы ингибитора ПСМА посредством ω-бис(пиридин-2-илметил)амино)алифатических кислот. Но в качестве ингибитора ПСМА не упоминается объект предлагаемого способа.

Так, предлагается один из способов присоединения хелатирующего агента к целевой молекуле посредством применения высокотоксичного пиридин-2-карбальдегида с последующим снятием защиты с карбоксильных групп ингибитора ПСМА под действием трифторуксусной кислоты в метиленхлориде в течение 4 часов (фиг. 4). В этом способе к ингибитору ПСМА через амино-группу в его структуре присоединяют пиридин-2-карбальдегид в присутствии NaBH(ОАс)3 в среде метиленхлорида при перемешивании при комнатной температуре в течение 4 часов. Выходы продуктов не охарактеризованы, но данный способ отличается низкими выходами.

Представлен также второй способ получения ингибитора ПСМА с биспиридил хелатором, включающий в себя две основные стадии. На первой стадии к ингибитору ПСМА прибавляют избыток дисукцимидил суберата (DSS) в диметилформамиде и перемешивают при комнатной температуре в течение 2 часов, получают сукцинимидное производное ингибитора ПСМА (фиг. 5). На второй стадии проводят конъюгацию между сукцинимидным производным ингибитора ПСМА с амино-группой биспиридил хелатора с различной длиной углеродной цепи в среде диметилформамида в присутствии триэтиламина в течение 8 часов перемешивая при комнатной температуре. Далее реакционную смесь упаривают при пониженном давлении, продукт выделяют экстракцией метиленхлоридом из водного слоя с последующей очисткой флэш-хроматографией (50/50 метанол/мети ленхлорид). Далее, для снятия зашиты с карбоксильных групп проводят гидролиз, используя трифторуксусную кислоту 7 мл и анизола 0,3 мл при перемешивании 20 мин, раствор выпаривают под вакуумом, промывают диэтиловым эфиром и водой. Затем грубый продукт очищают ВЭЖХ (75/25 вода (0,1% TFA)/ ацетонитрил (0,1%TFA), скорость потока 2 мл/мин). Данный способ получения также отличается применением токсичных растворителей метиленхлорида и метанола, трудоемкой схемой с невысокими выходами по стадиям.

Наиболее близким к предлагаемому способу можно считать способ получения, описанный также в трех патентах [9]. В этом способе присоединение хелатирующего агента - сукцинимид-1-ил 5-(бис(пиридин-2-илметил)амино)пентаноата к амино-группе ингибитора ПСМА осуществляют в метиленхлориде в присутствии триэтиламина при перемешивании при комнатной температуре, далее продукт выделяют экстракцией этилацетатом, промывают водой, насыщенным раствором натрия хлорида и сушат, используя безводный натрия сульфат. Далее очищают флэш-хроматографией (50/50 метанол/метиленхлорид). Снятие защиты с карбоксильных групп проводят под действием трифторуксусной кислоты в метиленхлориде в течение 4 часов, растворители удаляют досуха. Остаток растворяют в 7 мл воды и промывают метиленхлоридом (3×10 мл), водный слой концентрируют под вакуумом. Затем грубый продукт очищают ВЭЖХ (80/20 вода (0,1% TFA)/ ацетонитрил (0,1%TFA)). Выход продукта указан из расчета последней стадии и составляет 73% (фиг. 6).

Недостатками этого способа является необходимость применение сложной схемы синтеза, способов очистки с токсичными растворителями, также в патенте не указано хелатирование молекулы Glu-urea-Lys-дифенил-ПСМА-лиганда.

Новый технический результат - повышение селективности способа и выходов целевых продуктов, повышение универсальности.

Для достижения нового технического результата в способе получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99 м/рения 188/186 для диагностики рака предстательной железы, включающем получение конъюгата ингибитора простат-специфичного мембранного антигена (ПСМА) с хелатирующим агентом на основе сукциимидного эфира ω-бис(пиридин-2-илметил)амино)алифатических кислот, в качестве ингибитора ПСМА используют (3S,7S,25S,28S)-33-амино-25,28-дибензил-5,13,20,23,26,29-гексаоксо-4,6,12,29,24,27,30-гептаазатриоктан-1,3,7-трикарбоновую кислоту, а в качестве хелатирующего агента - сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино)гексаноат, присоединение хелатирующего агента к ингибитору проводят при мольном соотношении 1 : 1,2 - 5,0 в 10-200 ммоль фосфатном/или боратном/или карбонатном буфере с рН=6,5-9,0 / или в воде очищенной / или в физиологическом растворе натрия хлорида с добавлением и/или без ацетонитрила или диметилформамида, синтез проводят при комнатной температуре при перемешивании в течение 2-12 часов или инкубируют 12-24 часа при температуре 5-10°С, далее продукт очищают полупрепаративной высокоэффективной хроматографии (ВЭЖХ).

Получают продукт с выходом более 90%.

Отличительные признаки проявили в заявляемой методике совокупности новые свойства явным образом не вытекающие из уровня техники в данной области и не очевидные для специалиста.

Предлагаемая совокупность признаков не описана в патентной и научно-технической литературе.

Примеры конкретных способов получения

Пример 1. Методика синтеза сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино) гексаноата (DPAH-NHS-ester)

Синтез проводят как описано в патенте [11], используя циклогексанон. На последней стадии проводят активацию 6-(ди(пиридин-2-илметил)амино)гексановой кислоты. Для этого в круглодонной колбе к смеси 6-(ди(пиридин-2-илметил)амино)гексановой кислоты (в виде соли гидрохлорида) (1,200 г, 3,48 ммоль) в 6 мл тетрагидрофурана добавляют триэтиламин (0,510 мл, 3,48 ммоль) и далее смесь перемешивают 30 мин при комнатной температуре. Затем N-гидроксисукцинимид (0,474 г, 4,2 ммоль) and N,N-дициклогексилкарбодиимид (0,867 г, 4,2 ммоль) добавляют. Перемешивают 48 часов при комнатной температуре. Конец реакции определяют методом тонкослойной хроматографии (элюент: этилацетат - этанол = 10:3). На хроматограмме должно быть только одно основное пятно с Rf 0,35. Выпавший осадок N,N-дициклогексилмочевины отфильтровывают. В фильтрате отгоняют тетрагидрофуран, к полученному маслу добавляют 10 мл воды и экстрагируют метиленхлоридом (3×15 мл). Метиленхлоридное извлечение сушат над безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Полученную светло-желтую маслообразную массу сушат под вакуумом. Ориентировочная масса промежуточного продукта сукцинимид-1-ил 6-(ди(пиридин-2-илметил)амино)гексаноата (DPAH-NHS ester) составляет 0,874 г (62%).

Пример 2. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

2⋅10-3 ммоль (2 мг) Glu-urea-Lys-дифенил-ПСМА-лиганда, полученного как описано в источнике [2], растворяют в 0,5 мл 10 ммоль фосфатном буфере (PBS) (рН=8,0), добавляют 2,4⋅10-3 ммоль DPAH-NHS ester (1 мг) в 0,5 мл 10 ммоль PBS (рН=8,0), содержащем 20% ацетонитрила, перемешивают 12 часов при комнатной температуре. Контроль за ходом реакции осуществляют с помощью жидкостной хроматографии в подкисленной трифторуксусной кислотой (TFA) среде (tR = 14,077 мин, система Ultimate 3000 («Thermo», Германия), колонка Luna С18(2) 5 мкм, 100 А°, 250×4.6 мм, градиент концентрации: 0 мин 100% А (0% В), 5 мин 80% А (20% В), 10 мин 65% А (35% В), 15 мин 50% А (50% В), 25 мин 20% А (80% В), 30 мин 0% А (100% В), 32 мин 95% А (5% В), где система А - 0,1% TFA в воде и система В - 0,1% TFA в ацетонитриле, скорость потока 1 мл/мин) (фиг. 8). Очистку продукта проводят полупрепаративным методом (система Ultimate 3000 («Dionex», Германия), колонка Luna С18(2) 10 мкм, 100 А°, 250×10 мм, градиент концентрации 0 мин 100% А (0% В), 5 мин 80% А (20% В), 10 мин 65% А (35% В), 15 мин 50% А (50% В), 25 мин 20% А (80% В), 30 мин 0% А (100% В), 32 мин 95% А (5% В), где система А - 0,1% TFA в воде и система В - 0,1% TFA в ацетонитриле, скорость потока 5 мл/мин). Фракции, соответствующие целевому продукту (tR = 14,110 мин), объединяют и лиофилизируют. Выход продукта составил 95%, m/z 1179,9 (М+Н)+ (фиг. 9).

Пример 3. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 50 ммоль PBS. Выход продукта составил 94%.

Пример 4. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 100 ммоль PBS. Выход продукта составил 94,5%.

Пример 5. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 150 ммоль PBS. Выход продукта составил 93%.

Пример 6. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 200 ммоль PBS. Выход продукта составил 90%.

Пример 7. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=6,0). Выход продукта составил 75%.

Пример 8. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=6,5). Выход продукта составил 80%.

Пример 9. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=7,0). Выход продукта составил 84%.

Пример 10. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=7,5). Выход продукта составил 88%.

Пример 11. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=8,5). Выход продукта составил 90%.

Пример 12. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 10 ммоль PBS (рН=9,0). Выход продукта составил 89%.

Пример 13. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют 100 ммоль боратного буфера (рН=8,0). Выход продукта составил 92%.

Пример 14. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют физиологичный раствор натрия хлорида. Выход продукта составил 89%.

Пример 15. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что в качестве среды используют воду очищенную. Выход продукта составил 87%.

Пример 16. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что вместо ацетонитрила добавляют диметилформамид. Выход продукта составил 92%.

Пример 17. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что синтез проводят при комнатной температуре в течение 1 часа. Выход продукта составил 76%.

Пример 18. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что синтез проводят при комнатной температуре в течение 24 часов. Выход продукта составил 95%.

Пример 19. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что синтез проводят при комнатной температуре в течение 2 часов. Выход продукта составил 90%.

Пример 20. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что синтез проводят 12 часов при температуре 5-10°С. Выход продукта составил 85%.

Пример 21. Методика получения производного мочевины с хелатным центром, отвечающего формуле (фиг. 7)

Реакционную смесь готовят так же, как и в примере 2 с тем отличием, что синтез проводят 24 часа при температуре 5-10°С. Выход продукта составил 93%.

Обоснование режима

Проведенные исследования позволили сделать следующие выводы.

Реакция конъюгации Glu-urea-Lys-дифенил-ПСМА-лиганда с хелатирующим агентом DPAH-NHS ester проявляет существенную зависимость от рН. При низких значениях рН (менее 6,5) и высоких (более 9,0) происходит процесс гидролиза DPAH-NHS ester, являющего сукцинимидным эфиром. Оптимальным значением рН для модификации является 6,5-9,0 (примеры 2, 7-12). Молярность буферного раствора также не существенно влияет на выход целевого продукта, но наиболее подходящим является использование буферных растворов от 10 до 200 ммоль (примеры 2-7). Для модификации используют фосфатный, боратный, карбонатный буферные растворы, физиологичный раствор натрия хлорида или воду очищенную (примеры 2, 13-15). Выходы целевого продукта в разных растворителях выше 80%, следовательно, для модификации Glu-urea-Lys-дифенил-ПСМА-лиганда можно проводить в указанных растворителях, однако, предпочтительнее фосфатный буфер. В качестве со-растворителей можно применять 10 - 20% ацетонитрила или диметилформамида, выходы целевого продукта выше 90% (примеры 2, 16). Для достижения высоких выходов необходимо проводить синтез при комнатной температуре при перемешивании в течение 2-12 часов или 12-24 часа при температуре 5-10°С (примеры 2, 18-21).

Источники информации, принятые во внимание при составлении описания:

1) Радионуклидная диагностика рака предстательной железы: позитронно-эмиссионная томография с 68GA-PSMA-ингибиторами и их фармразработка / А.А. Ларенков, Г.Е. Кодина // Медицинская радиология и радиационная безопасность. 2017. Том 62. №6, с/ 58-74. DOI 10.12737/article_5a2542f7216cb3.01677610

2) Синтез коньюгатов лигандов простатического специфического мембранного антигена с доксорубицином для терапии рака предстательной железы и их биологическое тестирование / А.Э. Мачулкин, А.С.Гаранина, И.И. Киреев, И.Б. Алиева, Е.К. Белоглазкина, Н.В. Зык, В.Э. Котелянский, А.Г. Мажуга // Российский биотерапевтический журнал. Спецвыпуск. Т. 16.2017. С. 51.

3) Design, Synthesis, and Pre-clinical Evaluation of Prostate-Specific Membrane Antigen (PSMA)-Targeted 99mTc-Radioimaging Agents / Sumith A Kularatne, Zhigang Zhou, Jun Yang, Carol Beth Post, and Philip S. Low // Mo/. Pharmaceutics, 2009, 6 (3), pp 790-800, DOI: 10.1021/mp9000712

4) С. Santos-Cuevas, J. Davanzo, G. Ferro-Flores, F.O. B. E. Ignacio-Alvarez, E. M. 99mTc-labeled PSMA inhibitor: Biokinetics and Radiation Dosimetry in Healthy Subjects and Imaging of Prostate Cancer Tumors in Patients //Nucl Med Biol. (2017) 52:1-6.

5) G. Lu, K.P. Maresca, S.M. Hillier, C.N. Zimmerman, W.C. Eckelman, J.L. Joyal, J.W. Babich / Synthesis and SAR of 99mTc/Re-labeled small molecule prostate specific membrane antigen inhibitors with novel polar chelates//Bioorg. Med. Chem. Lett. (2013) 23:1557-1563.

6) Patent HK1215249 (A1). Labeled inhibitors of prostate specific membrane antigen (PSMA), biological evaluation, and use as imaging agents. Pomper, Martin Gilbert,; Ray, Sangeeta,; Mease, Ronnie C.; Foss, Catherine / 2016-08-19.

7) Patent WO 2010065899. Technetium-and rhenium-bis(heteroaryl) complexes and methods of use thereof for a inhibiting PSMA / John W. Babich, Craig Zimmerman, John Joyal, Kevin P. Maresca, John Marquis,Genliang Lu, Jian-Cheng Wang, Shawn Hillier // 10 июн 2010.

8) Patent WO 2009002529A2. Labeled inhibitors of prostate specific membrane antigen (psma), biological evaluation, and use as imaging agents / Martin Gilbert Pomper, Sangeeta Ray, Ronnie C. Mease, Catherine Foss // 2007-06-26.

9) AU 2015203742(A1). Labeled inhibitors of prostate specific membrane antigen (PSMA), biological evaluation, and use as imaging agents / Catherine Foss, Martin Gilbert Pomper, Sangeeta Ray, Ronnie C. Mease // 2015-07-30.

10) US 2015/0246144 A1. Labeled inhibitors of prostate specific membrane antigen (PSMA), biological evaluation, and use as imaging agents / Martin Gilbert Pomper, Sangeeta Ray, Ronnie C. Mease, Catherine Foss // 2015-09-03.

11) Патент №2616974, 19.04.2017. Юсубов M.C., Ларькина M.C., Подрезова Е.В., Стасюк Е.С., Скуридин B.C. Способ получения ω-бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов.

Приложение

Фигура 1. Структурная формула коньюгата карбамида с аминокислотами - соединение Glu-urea-Lys-дифенил-ПСМА-лиганд

Фигура 2. Основная формула M-Glu-Urea-Lys-X аналогов с биспиридил хелатором

Фигура 3. Основная схема синтеза M-Glu-Urea-Lys-X аналогов

Фигура 4. Способ получения ингибиторов ПСМА с биспиридил хелатором при использование пиридин-2-карбальдегида

Фигура 5. Способ получения ингибиторов ПСМА с биспиридил хелатором при использование DSS

Фигура 6. Способ получения ингибиторов ПСМА с биспиридил хелатором при использовании сукцинимид-1-ил 5-(бис(пиридин-2-илметил)амино)пентаноата

Фигура 7. Основная формула коньюгата карбамида с аминокислотами - соединение Glu-urea-Lys-дифенил-ПСМА-лиганд с хелатным центром на основе биспиридила хелата

Фигура 8. ВЭЖ хроматограмма целевого продукта (tR = 13,383 мин, чистота более 97%)

Фигура 9. Масс-спектр целевого продукта (электроспрей)

Похожие патенты RU2692126C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСА ПСМА-ТАРГЕТНОГО СОЕДИНЕНИЯ НА ОСНОВЕ МОЧЕВИНЫ Lu-PS-161 И КОМПЛЕКС 2023
  • Толмачев Владимир Максимилианович
  • Орлова Анна Марковна
  • Зельчан Роман Владимирович
  • Боденко Виталина Васильевна
  • Юсубов Мехман Сулейманович
  • Ларькина Мария Сергеевна
  • Плотников Евгений Владимирович
  • Юлдашева Феруза Шерзод Кизи
  • Стасюк Елена Сергеевна
  • Янович Глеб Евгеньевич
  • Сейтова Камила
  • Фоминых Анастасия Сергеевна
  • Третьякова Мария Сергеевна
  • Прач Анастасия Александровна
  • Безверхняя Екатерина Александровна
  • Мачулкин Алексей Эдуардович
  • Петров Станислав Александрович
  • Белоглазкина Елена Кимовна
  • Мажуга Александр Георгиевич
  • Чернов Владимир Иванович
RU2808636C1
Молекула общей структуры Y-Nic-F, способы получения, предшественники для её получения, а также применение в качестве действующего вещества в составе потенциального радиофармацевтического лекарственного препарата 2021
  • Дороватовский Станислав Анатольевич
RU2811181C2
ПСМА-ТАРГЕТНОЕ СОЕДИНЕНИЕ И ЕГО КОМПЛЕКС С РАДИОНУКЛИДАМИ ДЛЯ ТЕРАНОСТИКИ ОПУХОЛЕЙ, ЭКСПРЕССИРУЮЩИХ ПСМА 2022
  • Толмачев Владимир Максимилианович
  • Орлова Анна Марковна
  • Сейтова Камила
  • Боденко Виталина Васильевна
  • Фанни Лундмарк
  • Айман Абузайед
  • Улрика Росенстрём
RU2803734C1
СОЕДИНЕНИЕ ДЛЯ ДИАГНОСТИКИ ОПУХОЛЕЙ, ЭКСПРЕССИРУЮЩИХ ПСМА, И КОМПОЗИЦИЯ НА ЕГО ОСНОВЕ 2019
  • Мачулкин Алексей Эдуардович
  • Мажуга Александр Георгиевич
  • Бер Антон Петрович
  • Петров Станислав Александрович
  • Иваненков Ян Андреевич
  • Скворцов Дмитрий Александрович
  • Белоглазкина Елена Кимовна
  • Егорова Байирта Владимировна
  • Калмыкова Таисия Петровна
RU2730507C1
ЛИОФИЛИЗАТ ДЛЯ ПОЛУЧЕНИЯ ДИАГНОСТИЧЕСКОГО РАДИОФАРМАЦЕВТИЧЕСКОГО ЛЕКАРСТВЕННОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДА Tc 2022
  • Петриев Василий Михайлович
  • Тищенко Виктория Константиновна
  • Власова Оксана Петровна
  • Федоров Олег Владимирович
  • Дороватовский Станислав Анатольевич
  • Шегай Петр Викторович
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2799325C2
Лиганды PSMA для визуализации и эндорадиотерапии 2018
  • Вестер, Ганс-Юрген
  • Шмидт, Александр
  • Парцингер, Мара
RU2807076C2
ПРОСТАТИЧЕСКИЙ СПЕЦИФИЧЕСКИЙ МЕМБРАННЫЙ АНТИГЕН-ТАРГЕТНЫЕ ВЫСОКОАФФИННЫЕ СРЕДСТВА ДЛЯ ЭНДОРАДИОТЕРАПИИ РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ 2017
  • Рэй Сенджита
  • Помпер Мартин Г.
RU2749399C2
Способ получения комплекса технеция-99м с производным октреотида для диагностики нейроэндокринных опухолей 2019
  • Ларькина Мария Сергеевна
  • Нестеров Евгений Александрович
  • Юсубов Мехман Сулейман Оглы
  • Белоусов Михаил Валерьевич
  • Стасюк Елена Сергеевна
  • Варламова Наталья Валерьевна
  • Скуридин Виктор Сергеевич
  • Садкин Владимир Леонидович
  • Рогов Александр Сергеевич
  • Шелихова Елена Александровна
  • Ларионова Людмила Александровна
  • Подрезова Екатерина Владимировна
  • Чернов Владимир Иванович
  • Яновская Елена Анатольевна
  • Кривощеков Сергей Владимирович
RU2708076C1
Способ получения комплекса технеция-99м с рекомбинантными адресными молекулами белковой природы для радионуклидной диагностики онкологических заболеваний с гиперэкспрессией HER-2/neu 2018
  • Чернов Владимир Иванович
  • Зельчан Роман Владимирович
  • Медведева Анна Александровна
  • Брагина Ольга Дмитриевна
  • Синилкин Иван Геннадьевич
  • Скуридин Виктор Сергеевич
  • Стасюк Елена Сергеевна
  • Тагирова Екатерина Алексеевна
  • Юсубов Мехман Сулейманоглы
  • Белоусов Михаил Валерьевич
  • Ларькина Мария Сергеевна
  • Подрезова Екатерина Владимировна
RU2684289C1
ТЕХНЕЦИЙ- И РЕНИЙ-БИС(ГЕТЕРОАРИЛЬНЫЕ) КОМПЛЕКСЫ И МЕТОДЫ ИХ ПРИМЕНЕНИЯ ДЛЯ ИНГИБИРОВАНИЯ PSMA 2009
  • Бабич Джон У.
  • Циммерман. Крейг
  • Джоял Джон
  • Мареска Кевин П.
  • Лу Генлианг
  • Хильер Шон
RU2532912C2

Иллюстрации к изобретению RU 2 692 126 C1

Реферат патента 2019 года Способ получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения для диагностики/лечения рака предстательной железы

Изобретение относится к способу получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения 188/186 для диагностики рака предстательной железы. Способ включает получение конъюгата ингибитора простат-специфичного мембранного антигена (ПСМА) с хелатирующим агентом на основе сукциимидного эфира ω-бис(пиридин-2-илметил)амино)алифатических кислот. В качестве ингибитора ПСМА используют (3S,7S,25S,28S)-33-амино-25,28-дибензил-5,13,20,23,26,29-гексаоксо-4,6,12,29,24,27,30-гептаазатриоктан-1,3,7-трикарбоновую кислоту. В качестве хелатирующего агента используют сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино)гексаноат. Присоединение хелатирующего агента к ингибитору проводят при мольном соотношении 1:1,2-5,0 в 10-200 ммоль фосфатном, или боратном, или карбонатном буфере с рН 6,5-9,0, или в воде очищенной, или в физиологическом растворе натрия хлорида с добавлением и/или без ацетонитрила или диметилформамида, синтез проводят при комнатной температуре в течение 2-12 часов при перемешивании или инкубируют 12-24 часа при температуре 5-10°С, далее продукт очищают полупрепаративной высокоэффективной хроматографии. Предложенный способ позволяет получать целевой продукт с высоким выходом, который может быть использован для диагностики рака предстательной железы. 21 пр., 9 ил.

Формула изобретения RU 2 692 126 C1

Способ получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения 188/186 для диагностики рака предстательной железы, включающий получение конъюгата ингибитора простат-специфичного мембранного антигена (ПСМА) с хелатирующим агентом на основе сукциимидного эфира ω-бис(пиридин-2-илметил)амино)алифатических кислот, отличающийся тем, что в качестве ингибитора ПСМА используют (3S,7S,25S,28S)-33-амино-25,28-дибензил-5,13,20,23,26,29-гексаоксо-4,6,12,29,24,27,30-гептаазатриоктан-1,3,7-трикарбоновую кислоту, а в качестве хелатирующего агента - сукцинимид-1-ил 6-(бис(пиридин-2-илметил)амино)гексаноат, присоединение хелатирующего агента к ингибитору проводят при мольном соотношении 1:1,2-5,0 в 10-200 ммоль фосфатном, или боратном, или карбонатном буфере с рН 6,5-9,0, или в воде очищенной, или в физиологическом растворе натрия хлорида с добавлением и/или без ацетонитрила или диметилформамида, синтез проводят при комнатной температуре в течение 2-12 часов при перемешивании или инкубируют 12-24 часа при температуре 5-10°С, далее продукт очищают полупрепаративной высокоэффективной хроматографией.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692126C1

WO 2009002529 A2, 31.12.2008
WO 2010065899 A2, 10.06.2010
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов 2016
  • Юсубов Мехман Сулейманович
  • Ларькина Мария Сергеевна
  • Кулибаба Екатерина Владимировна
  • Скуридин Виктор Сергеевич
  • Стасюк Елена Сергеевна
RU2616974C1
ТЕХНЕЦИЙ- И РЕНИЙ-БИС(ГЕТЕРОАРИЛЬНЫЕ) КОМПЛЕКСЫ И МЕТОДЫ ИХ ПРИМЕНЕНИЯ ДЛЯ ИНГИБИРОВАНИЯ PSMA 2009
  • Бабич Джон У.
  • Циммерман. Крейг
  • Джоял Джон
  • Мареска Кевин П.
  • Лу Генлианг
  • Хильер Шон
RU2532912C2

RU 2 692 126 C1

Авторы

Ларькина Мария Сергеевна

Юсубов Мехман Сулейманоглы

Белоусов Михаил Валерьевич

Подрезова Екатерина Владимировна

Кривощеков Сергей Владимирович

Яновская Елена Анатольевна

Гурто Роман Владимирович

Мажуга Александр Георгиевич

Мачулкин Алексей Эдуардович

Чернов Владимир Иванович

Зельчан Роман Владимирович

Медведева Анна Александровна

Брагина Ольга Дмитриевна

Синилкин Иван Геннадьевич

Даты

2019-06-21Публикация

2018-02-13Подача