Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа Российский патент 2019 года по МПК B01D53/14 C01B23/00 

Описание патента на изобретение RU2708606C1

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа.

В основе функционирования предлагаемого устройства лежит такое свойство гелия, как существенное отличие растворимости в жидких углеводородах по сравнению с другими газами, состоящими из неполярных молекул и атомов и являющимися основными компонентами природного газа.

Известно устройство для криогенной сепарации газовых компонентов природного газа [1], состоящее из сырьевых теплообменников, аммиачного холодильника, сепараторов, ректификационных колон и теплообменников. К недостаткам данного устройства следует отнести высокую энергоемкость процесса, сложность основных механических узлов и оборудования.

Известен также способ и устройство [2], позволяющие сепарировать гелий из природного газа за счет абсорбционного эффекта и мембранной технологии, основанный на эффекте сорбционного поглощения и десорбционного выделения природного газа и содержащегося в нем гелия в жидких углеводородах и представляющее из себя сорбционно-десорбционное устройства и мембранный блок. К недостаткам данного устройства следует отнести низкую эффективность абсорбционно-десорбционных процессов и массообменных процессов, а также ненадежность работы мембранного блока из-за забивки мембран примесями, содержащимися в природном газе, что требует технически сложной регенерации или частой замены мембран.

Наиболее близким по технической сущности к предлагаемому техническому решению является устройство [3],состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного теплообменником и соединенным с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженного теплообменником и холодильником и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента. Внутри корпусов абсорбера и десорбера могут быть расположены известные в технике контактные устройства интенсифицирующие массообменные процессы (насадочные, тарельчатые, пленочные, с механическим диспергированием абсорбента, с использованием сопел Вентури и т.д.). Общим недостатком указанных устройств является недостаточная эффективность реализуемых в них массообменных процессов, отсутствие высокоэффективного устройства капельного улавливания и возврата жидкого абсорбента.

Технической задачей предлагаемого изобретения является создание абсорбционно-десорбционной установки циркуляционного типа для сепарации гелия из природного газа с применением абсорбентов (типа н-гексана или прямогонного бензина) и высокоэффективных массобменных процессов, реализуемых с применением устройств с использованием недорасширенных звуковых, а также закрученных газовых струй, контактирующих с жидким абсорбентом, осуществление интенсификации сепарационных процессов газожидкостных потоков на выходе из абсорбера и десорбера и организация возврата отсепарированного абсорбента в установку.

Поставленная задача решается тем, что, абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенным с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженного теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента, отличающееся тем, что патрубок подвода исходного газа выполнен в виде конфузорного сопла расположенного аксиально, в вершине конической части цилиндроконического корпуса абсорбера, и снабженного редуктором давления, а внутри корпуса абсорбера, имеющего верхний и нижний уровнемеры жидкости и датчик температуры, расположена, также аксильным образом, диффузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе и имеющий форбункер сбора уловленного абсорбента, снабженный нижним и верхним уровнемерами жидкости, соединенным с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой, и веденым в нижнюю часть корпуса десорбера, снабженного верхним и нижним уровнемерами жидкости и датчиком температуры, причем патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера, соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой, выход которой соединен с конфузорным аксиальным соплом, введенным в вершину цилиндроконического корпуса десорбера и расположенной, также аксиально, циркуляционной трубой конфузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью, и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера, верхний патрубок рециркуляции допополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос, при этом в состав установки введен управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий, также через линии связи, работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника.

На фиг. 1 изображено абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа, состоящее из цилиндро-конического корпуса 1 абсорбера с патрубком 2 подвода исходного природного газа через редуктор давления 3 соединенного с нижним аксиальным конфузорным соплом 4. Внутри цилиндроконического корпуса абсорбера 1 расположена аксиально конфузорная циркуляционная труба 5, открытая с обоих торцов и имеющая возможность вертикального перемещения. Над верхним торцом циркуляционной трубы 5 расположен дефлектор 6 с криволинейной осесимметричной поверхностью. В корпусе абсорбера выполнены верхний патрубок 7 для заполнения жидким абсорбентом и нижний патрубок 8 для опорожнения корпуса 1 от абсорбента. Также на корпусе 1 расположены датчик 9 давления, датчик 10 температуры абсорбента, верхний уровнемер 37 жидкого абсорбента и нижний уровнемер 38 жидкого абсорбента. Патрубок 11 выхода обогащенного гелием газа из корпуса 1 абсорбера соединен с циклонным каплеуловителем 12, на выходе которого расположен редуктор давления 13.

Циклонный каплеуловитель 12 имеет форбункер 14 снабженный верхним уровнемером 37 жидкого абсорбента и нижним уровнемером 38 жидкого абсорбента. Форбункер 14 соединен через управляемую дрооссельную заслонку 15 со стояком 16 вывода уловленного в циклонном каплеуловителе 12 жидкого абсорбента в нижнюю часть цилиндро-конического корпуса 17 десорбера. В корпусе 17 десорбера выполнены верхний патрубок 7 для заполнения жидким абсорбентом и нижний 8 для опорожнения корпуса 17 от абсорбента. Также на корпусе 17 расположены датчик 9 давления, датчик 10 температуры абсорбента, верхний уровнемер 37 жидкого абсорбента и нижний уровнемер 38 жидкого абсорбента. В вершину конической части десорбера 17 введен патрубок вихревой камеры 18, соединенный с аксиальным конфузорным соплом 19. Внутри корпуса 17 десорбера расположена аксиально диффузорная циркуляционная труба 20, открытая с обоих торцов и имеющая возможность вертикального перемещения. Над верхним торцом циркуляционной трубы 20 находится дефлектор 21 с криволинейной осесимметричной поверхностью. Выходной патрубок 22 корпуса 17 десорбера соединен с циклонным каплеуловителем 23 имеющим стояк 26 возврата уловленного абсорбента, а выхлопной патрубок циклонного каплеуловителя соединен с редуктором 24 давления и патрубком 25 вывода обедненного газа. Нижняя коническая часть корпуса 1 абсорбера соединена патрубком 27 подачи насыщенного газом абсорбента корпус десорбера через подогреватель 28, регулируемую дроссельную заслонку29 и патрубок 30 с вихревой камерой 18. Верхняя часть корпуса 17 десорбера через теплообменник 31 и холодильник 32 соединена патрубком 33 с рециркуляционным насосом 34, выходной патрубок 35 которого введен в верхнюю часть корпуса 1 абсорбера, причем патрубок 35 связан с компенсационной емкостью для абсорбента 35 через гидронасос 36. Для контроля и управления процессом абсорбции и десорбции служит микропроцессор 40 на вход которого поступают через линии связи данные о контролируемых параметрах датчиков 10.38.39, а выходные линии 42 служат для управления приводов элементов 15. 28, 29, 31, 34, 37.

Функционирует установка следующим образом. Корпуса 1 абсорбера и 17 десорбера заполняются абсорбентом через патрубки 7. В качестве абсорбента применяется н-гексан, в котором растворимость гелия меньше в 20 раз чем С2Н4. Для газов - метана, пропана, бутана и т.п.величина растворимости растет с уменьшением температуры, для гелия и азота она существенно падает с уменьшением температуры раствора в жидких углеводородах. Так при уменьшении температуры раствора гелия в бензине термической перегонки с 20°С до -20°С (давление 1 атм) величина растворимости (моль/моль р-ра) падает в 3 раза. После заполнения корпусов 1 абсорбера и 17 десорбера, не превышающим верхний уровень, определяемый датчиками уровня 38, 39 патрубки 7 герметизируются (на фиг. 1 устройство герметизации не показано) и включается подача природного газа через патрубок 2, редуктор 3 давления и конфузорное сопло 4, параметры которого обеспечивают звуковое истечение струи природного газа в режиме недорасширения. Данный режим позволяет сформировать высокоградиентные газодинамические структуры струи на выходе из сопла (скачки уплотнения и разрежения), генерирующие интенсивные турбулентные пульсации скоростей и давления газа, что существенно интесифицирует массообменные процессы между газом и жидким абсорбентом, за счет интенсивного диспергирования абсорбента и высоких относительных скоростей взаимодействия частиц диспергированного абсорбента и высокоградиентных структур недорасширенной газовой струи, истекающей из сопла 4. Редуктор давления 3 РД1 поддерживает давление на выходе из сопла 4 в пределах 10-10.1 Мпа. Циркуляционная труба 5 выполнена конфузорной и предназначена для реализации процесса транспортирования абсорбента в верхнюю, свободную от абсорбента часть корпуса 1 и дополнительного абсорбирования газа, что позволяет сохранить скорость газа по высоте трубы 5, расход которого падает по высоте за счет процесса абсорбции и, тем самым, сохранить эффективность сепарации дефлектора 6 с криволинейной осесимметричной поверхностью. Угол раскрытия конфузорной циркуляционной трубы 5 определяется эмпирически. Жидкий абсорбент с частично абсорбированным газом попадает на свободную поверхность абсорбента и движется вниз, в зону взаимодействия жидкого абсорбента и недорасширенной газовой струи, истекающей из конфузорного сопла 4. Осуществляется внутренняя рециркуляция абсорбента внутри корпуса 1 абсорбера, в процессе которой реализуется дополнительная абсорбция газа. Интенсивность внутренней рециркуляции регулируется величиной кольцевого зазора между корпусом 1 и нижним срезом конфузорной трубы 5. Обогащенный гелием газ через патрубок 11 поступает в циклонный каплеуловитель 12 и выходит через редуктор давления 13 РД2, настроенный на поддержания давления газа 9.9 Мпа в установки. Уловленный жидкий абсорбент поступает в форбункер 14 и возвращается через регулируемую дроссельную заслонку 15 и стояк 16 в нижнюю часть корпуса 17 десорбера, за счет перепада давления внутри корпуса 1 абсорбера и внутри корпуса 17 десорбера. Работа дроссельной заслонки регулируется за счет датчиков 38 и 39 верхнего и нижнего уровня абсорбента, подающих информацию через линии связи 41 на вход микропроцессора 40, который формирует управляющий сигнал и подает его через линию связи 42 на управляемую дроссельную заслонку 15. По мере сепарации газа абсорбентом объем жидкого абсорбента в корпусе 1 увеличивается и достигает верхнего уровня, контролируемого датчиком 38 верхнего уровня, от которого через линию связи 41 поступает сигнал на вход микропроцессора 40, на выходе которого формируется управляющий сигнал, поступающий через линию связи 42 на регулируемую дроссельную заслонку 29. Перед дроссельной заслонкой 29 включен после патрубка 27 теплообменник 28, служащий для нагревания поступающего абсорбента в корпус 17, что, наряду с понижением давления, интенсифицирует процесс десорбции. Величина нагрева абсорбента в корпусе 17 десорбера контролируется датчиком 10 температуры размещенным на корпусе 17 десорбера и управляется микропроцессором 40, управляющий сигнал от которого через линию связи 42 поступает на теплообменник 28. Сброс давления абсорбента происходит на дросселе 29 с 10-10.1 Мпа до 5 Мпа, за счет работы редуктора давления 24 РД-3, что, наряду с повышением температуры абсорбента, приводит к десорбции абсорбента. Реализуется течение газожидкостной среды через патрубок 30 на вход вихревой камеры 18, что дополнительно позволяет интенсифицировать процесс десорбции. После вихревой камеры 18 газожидкостной поток через звуковое конфузорное сопло 19, работающее в режиме недорасширения, поступает в корпу 17 десорбера, где реализуется массобменный процесс аналогичный массобменному процессу в корпусе 1 абсорбера. Осуществляется внутренняя рециркуляция абсорбента в корпусе 17 десорбера через циркуляционную трубу 20. В отличие от циркуляционной трубы 5 в корпусе 1 абсорбера, циркуляционная труба 30 десорбера выполнена в виде диффузора, что обусловлено ростом по высоте циркуляционной трубы расхода газа, за счет десорбционного процесса. Струя обедненного газа на выходе из циркуляционной трубы 20 контактирует с криволинейной поверхностью дефлектора 21, где за счет центробежных сил реализуется первая ступень сепарации жидкого абсорбента от взвесенесущего газового потока. Далее через патрубок 22 корпуса 17 десорбера поступает на ход циклонного каплеуловителя 23, где в поле центробежных сил реализуется вторая ступень сепарации жидкого абсорбента от взвесенесущего газового потока. Далее, через редуктор давления 24 РД-4, газ выводится из установки через патрубок 25. Внешняя рециркуляция десорбированного абсорбента происходит через патрубок 32, введенного в корпус 17 десорбера ниже уровня жидкого абсорбента, контролируемого верхним датчиком 38 уровня жидкости, через теплообменник 31 и холодильник 33, за счет работы рециркуляционного насоса 34, подающего абсорбент внутрь корпуса 1 абсорбера через патрубок 35. Величина расхода и температуры охлажденного рециркулирующего абсорбента контролируется датчиком температура 10 на корпусе 17 десорбера и регулируется микропроцессором 40, подающим управляющий сигнал по линиям связи 42 на теплообменник 31 и холодильник 33 и на рециркуляционный насос 34. Патрубок 35 соединен с компенсационной емкостью 36 с гидронасосом 37 подающим, в случае необходимости, при необратимом выносе жидкого абсорбента из установки через циклонные каплеуловители 12, 23, дополнительное количество абсорбента. Количество дополнительного абсорбента контролируется датчиками нижнего уровня 39 корпусов 1 и 17 абсорбера и десорбера, соответственно, и управляющим сигналом, поступающим от микропроцессора 40 по линии связи 42 гидронасос 37.

ЛИТЕРАТУРА

1. Энциклопедия техники http://enciklopediya-tehniki.ru/tehnologiva-dobychi-gaza-i-nefti/izvlechenie-geliva-iz-prirodnogo-gaza.html

2. US Pat №4690695

3. Абсорбция и десорбция-Narod.ru o-juravie2013.narod.ru/index_ABSORB.him стр. 1-2,рис.1. Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. С44 Процессы и аппараты нефтегазопереработки и нефтехимии: Учебник для вузов. - 3-изд., перераб. и доп. - М.: 00 "Недра Бизнесцентр", 2000. - 677 с: ил. ISBN 5-8365-0035-5, глава VI абсорбция десорбция, рис. VI

Похожие патенты RU2708606C1

название год авторы номер документа
УНИВЕРСАЛЬНАЯ МАССООБМЕННАЯ АБСОРБЦИОННО-ДЕСОРБЦИОННАЯ УСТАНОВКА 2010
  • Зимин Борис Алексеевич
RU2446000C1
Аппарат для обработки газа 1991
  • Анисимов Владимир Михайлович
  • Анисимова Майя Леонидовна
SU1784259A1
УСТАНОВКА УЛАВЛИВАНИЯ УГЛЕВОДОРОДНЫХ ПАРОВ 2010
  • Зимин Борис Алексеевич
  • Маликов Наргиз Габбасович
RU2452556C1
МАССООБМЕННИК (ДЕСОРБЕР-АБСОРБЕР) 2009
  • Зимин Борис Алексеевич
RU2440839C2
СПОСОБ УЛАВЛИВАНИЯ И РЕКУПЕРАЦИИ ПАРОВ УГЛЕВОДОРОДОВ И ДРУГИХ ЛЕГКОКИПЯЩИХ ВЕЩЕСТВ ИЗ ПАРОГАЗОВЫХ СМЕСЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Бердников Владимир Иванович
  • Баранов Дмитрий Анатольевич
RU2316384C2
ДЕСОРБЕР ОЧИСТКИ НЕФТИ ОТ ВРЕДНЫХ ГАЗОВ 2007
  • Зимин Борис Алексеевич
  • Маликов Наргиз Габбасович
RU2363514C1
УСТАНОВКА ДЛЯ УЛАВЛИВАНИЯ ПАРОВ УГЛЕВОДОРОДОВ ИЗ ПАРОВОЗДУШНЫХ СМЕСЕЙ, ОБРАЗУЮЩИХСЯ ПРИ ХРАНЕНИИ И ПЕРЕВАЛКЕ НЕФТЕПРОДУКТОВ 2004
  • Бердников Владимир Иванович
  • Карташов Михаил Александрович
  • Беляков Олег Дмитриевич
RU2309787C2
АБСОРБЕР ОСУШКИ ГАЗА 2021
  • Зятиков Павел Николаевич
  • Василевский Михаил Викторович
  • Никонов Юрий Алексеевич
  • Садретдинов Шамиль Рахибович
  • Максимова Юлия Анатольевна
RU2757777C1
МОКРЫЙ СКРУББЕР 2012
  • Зимин Борис Алексеевич
RU2490055C1
ДЕСОРБЦИОННАЯ УСТАНОВКА 2007
  • Зимин Борис Алексеевич
RU2356843C1

Иллюстрации к изобретению RU 2 708 606 C1

Реферат патента 2019 года Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа. Устройство состоит из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенного с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженный теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента. Патрубок подвода исходного газа выполнен в виде конфузорного аксиального сопла, снабженного редуктором давления. Внутри корпуса абсорбера расположена аксиальная конфузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов. Над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе, имеющий форбункер сбора уловленного абсорбента, соединенный с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой и введенным в нижнюю часть корпуса десорбера. Патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой. Выход вихревой камеры соединен с конфузорным аксиальным соплом и расположенной аксиально циркуляционной трубой диффузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов. Над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера. Верхний патрубок рециркуляции дополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос. Корпусы абсорбера, десорбера и форбункера снабжены верхними и нижними уровнемерами, датчиками температуры. Установка содержит управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий через линии связи работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника. Технический результат: повышение эффективности массообменных процессов, интенсификация сепарации. 1 ил .

Формула изобретения RU 2 708 606 C1

Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа, состоящее из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием газа и патрубком вывода насыщенного абсорбента, снабженного подогревателем и соединенного с корпусом десорбера, имеющим патрубок рециркуляции абсорбента в корпус абсорбера, снабженный теплообменником и холодильником, и верхний патрубок выхода обедненного гелием газа, соединенный с каплеуловителем, снабженным емкостью для приема уловленного абсорбента, отличающееся тем, что патрубок подвода исходного газа выполнен в виде конфузорного сопла, расположенного аксиально в вершине конической части цилиндроконического корпуса абсорбера и снабженного редуктором давления, а внутри корпуса абсорбера, имеющего верхний и нижний уровнемеры жидкости и датчик температуры, расположена также аксиальным образом конфузорная циркуляционная труба, имеющая возможность вертикального перемещения и открытая с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходе, имеющий форбункер сбора уловленного абсорбента, снабженный нижним и верхним уровнемерами жидкости, соединенный с трубчатым стояком возврата насыщенного абсорбента в цилиндроконический корпус десорбера, дополненным регулируемой дроссельной заслонкой и введенным в нижнюю часть корпуса десорбера, снабженного верхним и нижним уровнемерами жидкости и датчиком температуры, причем патрубок возврата насыщенного абсорбента в корпус десорбера из абсорбера соединен с нижней частью корпуса абсорбера через регулируемую дроссельную заслонку и подогреватель, а также дополнительно снабжен на входе в десорбер вихревой камерой, выход которой соединен с конфузорным аксиальным соплом, введенным в вершину цилиндроконического корпуса десорбера, и расположенной также аксиально циркуляционной трубой диффузорного типа, имеющей возможность вертикального перемещения и открытой с обоих торцов, причем над верхним торцом циркуляционной трубы расположен дефлектор с криволинейной осесимметричной поверхностью и циклонный каплеуловитель с редуктором давления на выходном патрубке и с трубчатым стояком, введенным в нижнюю часть десорбера, верхний патрубок рециркуляции дополнительно снабжен рециркуляционным насосом и соединен с компенсационной емкостью абсорбента через управляемый гидронасос, при этом в состав установки введен управляющий микропроцессор, соединенный линиями связи с дроссельными заслонками, датчиками уровней абсорбера и десорбера, датчиками температуры и управляющий через линии связи работой дроссельных устройств, рециркуляционного насоса, гидронасоса компенсационной емкости, холодильника и теплообменника.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708606C1

А.И
СКОБЛО и др
"Процессы и аппараты нефтегазопереработки и нефтехимии", Учебник для вузов - 3-изд., перераб
и доп., М:-ООО "Недра Бизнесцентр", 2000, с.194-195, 211-219
Способ гнутья деревянных элементов 1948
  • Леонтьев И.И.
SU77174A1
ИЗВЛЕЧЕНИЕ ГЕЛИЯ ИЗ ПОТОКОВ ПРИРОДНОГО ГАЗА 2012
  • Элфке Расселл Х.
  • Виктори Дональд
RU2606223C2
Способ управления процессом абсорбции -десорбции 1986
  • Ухабин Михаил Михайлович
  • Шевчук Валерий Петрович
  • Иванов Олег Александрович
  • Педченко Валерий Николаевич
  • Деревцов Владимир Иванович
  • Барановский Владимир Семенович
  • Федоров Лев Александрович
SU1364357A1
ЦИКЛИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ ДВУОКИСИ СЕРЫ ИЗ ГАЗОВОГО ПОТОКА 1989
  • Хакка Лео Эрнест[Ca]
RU2018353C1
Асинхронный вентильный каскад 1961
  • Онищенко Г.Б.
SU140855A1
Абсорбционный аппарат 1978
  • Лосик Виктор Иванович
  • Невелич Виталий Владимирович
  • Яковлева Анна Трофимовна
  • Антонов Владимир Николаевич
  • Бобоедов Виктор Иванович
  • Андреев Владимир Федорович
SU688200A1
US 3438728 A1,

RU 2 708 606 C1

Авторы

Бутов Владимир Григорьевич

Демиденко Анатолий Адамович

Солоненко Виктор Александрович

Романдин Владимир Иванович

Якушев Андрей Андреевич

Даты

2019-12-09Публикация

2019-07-25Подача