Устройство для изменения положения модели в рабочей части аэродинамической трубы Российский патент 2019 года по МПК G01M9/04 

Описание патента на изобретение RU2708681C1

Предложение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы.

Известны устройства для изменения положения модели в рабочей части аэродинамической трубы, содержащие узел крепления державки для установки модели, который посредством пилона соединен с кареткой, взаимодействующей с приводом и направляющими в виде сегмента окружности, обеспечивающими перемещение каретки и поворот державки модели в требуемом диапазоне углов в продольной вертикальной плоскости - плоскости углов атаки модели α, причем указанные направляющие снабжены дополнительными приводами и направляющими для обеспечения продольного (по направлению потока - ось х) и вертикального (ось у) перемещений пилона и державки модели и их поворота вокруг вертикальной оси - в плоскости углов скольжения β (см., например, В.А. Козловский, В.И. Лагутин и др. Модернизация трансзвуковой аэродинамической трубы переменной плотности У-21. Космонавтика и ракетостроение, ЦНИИмаш, 2016, вып.5(90), с. 124-137).

Недостатками устройств такого типа являются их громоздкость, значительная масса и недостаточное быстродействие. Кроме того, задание углов β путем поворота пилона вокруг вертикальной оси приводит к нежелательному дополнительному загромождению потока в рабочей части аэродинамической трубы.

Известно устройство для изменения положения модели в рабочей части аэродинамической трубы (см. патент РФ №2629696, 2016 г., МПК G01M 9/04), выбранное в качестве прототипа и содержащее узел крепления державки с моделью, выполненный с возможностью поворота державки вокруг ее продольной оси, две пары шарниров, размещенных симметрично относительно вертикальной плоскости на узле крепления державки в двух точках, разнесенных по его длине, причем шарниры, расположенные на его хвостовой части, смещены по вертикали относительно продольной оси на расстояние, соответствующее максимальному повороту узла крепления в вертикальной плоскости, и стойки обтекаемой формы, взаимодействующие с одной стороны с указанными шарнирами, а с другой стороны - с каретками, снабженными автономными приводами, и продольными направляющими, закрепленными в рабочей части.

Устройство обладает сравнительно небольшой массой, обеспечивает изменение положений модели по осям х, у и углам атаки α и крена ϕ (вокруг оси x).

В силу своих конструктивных особенностей и наличия большого числа шарниров и люфтов в них устройство обладает недостаточной жесткостью и точностью позиционирования модели, при этом его управление, требующее одновременного функционирования трех приводов, достаточно сложно и ненадежно.

Задачами, на решение которых направлено данное предложение, являются повышение жесткости устройства, точности позиционирования модели в рабочей части аэродинамической трубы и упрощение управления.

Технический результат, который достигается данным предложением, заключается в повышении жесткости механизма за счет уменьшения числа шарнирных и подвижных соединений и упрощения управления.

Этот результат достигается тем, что в устройстве для изменения положения модели в рабочей части аэродинамической трубы, содержащем узел крепления державки с моделью, выполненный с возможностью поворота державки вокруг ее продольной оси, две пары шарниров, размещенных симметрично относительно вертикальной плоскости на узле крепления державки в двух точках, разнесенных по его длине, причем шарниры, расположенные на его хвостовой части, смещены по вертикали относительно продольной оси на расстояние, соответствующее максимальному повороту узла крепления в вертикальной плоскости, и стойки обтекаемой формы, взаимодействующие с одной стороны с указанными шарнирами, а с другой стороны - с каретками, снабженными автономными приводами, и продольными направляющими, закрепленными в рабочей части, указанные стойки передних шарниров на узле крепления державки соединены с кареткой жестко, а стойка шарниров хвостовой части узла крепления соединена с этой же кареткой с помощью шарнира и снабжена механизмом изменения ее длины с дополнительным автономным приводом, при этом указанная каретка с соединенными с ней стойками посредством введенной дополнительно вертикальной направляющей установлена на каретке, размещенной на указанных продольных направляющих.

Техническая сущность предложения заключается в разделении обеспечения функций вертикального и продольного перемещений державки с моделью и ее угловых перемещений (что упрощает управление) и повышении жесткости устройства за счет создания более жесткой опорной структуры для основного несущего шарнира устройства.

Фигуры 1 и 2 поясняют существо предложения. На фиг. 1 показан общий вид устройства для изменения положения модели в рабочей части аэродинамической трубы при различных положениях модели: вне потока (а), в потоке аэродинамической трубы при угле атаки α=0 (б) и в потоке аэродинамической трубы при угле атаки α=max (в). На фиг. 2 представлен продольный разрез узла крепления модели.

Устройство для изменения положения испытываемой модели размещено в рабочей части аэродинамической трубы между соплом 1 и диффузором 2 и содержит узел крепления 3 державки 4, на которой закреплена испытываемая модель 5. Узел крепления 3 с помощью передних 6 и задней 7 стоек и двух передних 8 и двух задних 9 шарниров, установленных симметрично в вертикальной плоскости на узле крепления державки в двух точках, разнесенных по его длине, соединен с кареткой 10, размещенной на вертикально установленной направляющей 11 и взаимодействующей с автономным приводом (типа «винт-гайка») ее вертикального перемещения 12. Шарниры 9 смещены по вертикали относительно продольной оси узла крепления 3 и державки 4 на расстояние, соответствующее их максимальному повороту в вертикальной плоскости. Передние стойки 6 обтекаемой формы жестко связаны с кареткой 10 и при виде устройства по направлению потока образуют вместе с поверхностью каретки треугольную жесткую структуру. Направляющая 11 установлена на каретке 13, взаимодействующей с автономным приводом продольного перемещения 14 и горизонтальными продольными направляющими 15, закрепленными симметрично относительно вертикальной плоскости в рабочей части аэродинамической трубы. Задняя стойка 7 обтекаемой формы соединена с кареткой 10 посредством шарнира 16 и снабжена механизмом изменения ее длины 17, управляемым автономным приводом 18.

Державка 4 для крепления испытываемой модели 5 размещена в узле крепления 3 с помощью подшипников 19 (фиг. 2), обеспечивающих возможность ее поворота вокруг продольной оси и снабжена автономным управляемым приводом 20 осевого поворота державки для задания требуемого угла крена ϕ испытываемой модели 5.

Работа устройства осуществляется с помощью программно-управляемых приводов 12, 14, 18 и 20 следующим образом.

Перед началом испытаний в аэродинамической трубе устройство с установленной на нем испытываемой моделью 6 находится в рабочей части 1 аэродинамической трубы в положении а) - фиг. 1 при α=0, при этом модель 5 и устройство в рабочей части занимают соответствующее продольное и вертикальное положение, обеспеченное каретками и приводами 13 и 14, 10 и 12 и во время запуска и выхода аэродинамической трубы на расчетный режим модель изолирована от воздействия рабочего потока из сопла 1 и пусковых перегрузок.

Далее производят перемещение модели 5 в поток. Для этого с помощью автономного привода 12 осуществляют вертикальное программно-управляемое перемещение каретки 10 и державки 4 с моделью 5 по направляющей 11 в положение б) - фиг. 1.

Задание модели углов атаки α производят изменением длины стойки 8 с помощью механизма 17 и привода 18. Показанное на фиг. 1 положение в) модели 5 условно соответствует максимальному значению угла атаки α=max. Размещение модели в соответствующих зонах рабочего потока и задание модели 5 и державке 4 требуемых положений по координатам х и у осуществляют соответствующим программно-управляемым смещением кареток 13 и 10 по их горизонтальным 15 или вертикальной 11 направляющим с помощью приводов 14 или 12. При совместной работе приводов 12, 14 и 18 имеется возможность осуществлять поворот модели по углу атаки а относительно заданной точки поля потока (например, центра окна оптического прибора визуализации картины обтекания модели).

В рассматриваемой конструкции (так же, как и в прототипе) предусмотрена возможность задания значения минимального угла атаки α, немного отличающегося от нулевого (~ - 5°), при необходимости полный диапазон отрицательных углов атаки α=min модели 5 может быть обеспечен ее поворотом на угол ϕ=180° в положении α=max.

Задание державке 4 и модели 5 требуемых углов крена ϕ осуществляют с помощью привода 20 в любом из положений модели по х, у и углу атаки α.

Перед сходом с режима аэродинамической трубы устройство соответствующим программно-управляемым смещением кареток 10 и 13 и изменением длины стойки 7 с помощью механизма 17 возвращают в положение б) - фиг. 1 (при положении модели α=0), а затем переводят в исходное положение а) - фиг. 1 вне потока аэродинамической трубы.

Таким образом, разработанная конструкция устройства обеспечивает требуемые функции при повышенной его жесткости (и, как следствие, повышенной точности позиционирования испытываемой модели) и упрощении управления.

Похожие патенты RU2708681C1

название год авторы номер документа
Устройство для изменения положения модели в рабочей части аэродинамической трубы 2019
  • Алёшин Александр Константинович
  • Андреев Виктор Николаевич
  • Глазунов Виктор Аркадьевич
  • Козловский Виктор Андреевич
  • Кондратьев Игорь Михайлович
  • Лагутин Вячеслав Иванович
  • Макушин Александр Васильевич
  • Надеждин Алексей Евгеньевич
  • Рашоян Гагик Володяевич
  • Скворцов Сергей Александрович
RU2708680C1
УСТРОЙСТВО ДЛЯ ИЗМЕНЕНИЯ ПОЛОЖЕНИЯ МОДЕЛИ В РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ 2016
  • Глазунов Виктор Аркадьевич
  • Алёшин Александр Константинович
  • Габутдинов Наиль Рамилевич
  • Рашоян Гагик Володяевич
  • Скворцов Сергей Александрович
  • Кондратьев Игорь Михайлович
  • Козловский Виктор Андреевич
  • Лагутин Вячеслав Иванович
  • Игумнов Владимир Константинович
RU2629696C1
Устройство для изменения положения модели в рабочей части аэродинамической трубы 2018
  • Козловский Виктор Андреевич
  • Лагутин Вячеслав Иванович
RU2690097C1
Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах 2017
  • Гусев Денис Витальевич
  • Козловский Виктор Андреевич
  • Лагутин Вячеслав Иванович
  • Макушин Александр Васильевич
  • Надеждин Алексей Евгеньевич
RU2685576C2
УСТРОЙСТВО ДЛЯ УГЛОВЫХ И ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ 1994
  • Мерлис В.П.
RU2102714C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МОДЕЛИ И АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Болотин Виктор Александрович
  • Дядькин Анатолий Александрович
  • Ереза Александр Георгиевич
  • Наседкин Николай Васильевич
  • Пономарев Лель Федорович
  • Решетин Андрей Георгиевич
  • Серафимов Владимир Петрович
  • Сунгуров Юрий Викторович
RU2097729C1
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЙ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В АЭРОДИНАМИЧЕСКИХ ТРУБАХ 2013
  • Быков Михаил Андреевич
  • Лагутин Вячеслав Иванович
RU2539763C1
Способ управления положением модели в аэродинамической трубе 2017
  • Пономарев Александр Сергеевич
  • Шевченко Ольга Васильевна
  • Мулина Евгения Олеговна
RU2660225C1
Координатное устройство аэродинамической трубы 1990
  • Горшков Александр Трофимович
  • Литвак Михаил Матусович
SU1816981A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ АЭРОДИНАМИЧЕСКИХ СИЛ И МОМЕНТОВ ПРИ УСТАНОВИВШЕМСЯ ВРАЩЕНИИ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Виноградов Юрий Александрович
  • Жук Анатолий Николаевич
  • Колинько Константин Анатольевич
  • Храбров Александр Николаевич
  • Гоман Михаил Гиршевич
RU2477460C1

Иллюстрации к изобретению RU 2 708 681 C1

Реферат патента 2019 года Устройство для изменения положения модели в рабочей части аэродинамической трубы

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы. Устройство содержит узел крепления державки с моделью, выполненный с возможностью поворота державки вокруг продольной оси, две пары шарниров, размещенных симметрично относительно вертикальной плоскости на узле крепления в двух точках, разнесенных по его длине, причем шарниры, размещенные на его хвостовой части, смещены по вертикали относительно его продольной оси на расстояние, соответствующее его максимальному повороту в вертикальной плоскости, и стойки обтекаемой формы, соединенные с одной стороны с указанными шарнирами, а с другой стороны - с каретками, взаимодействующими с автономными приводами их перемещения и закрепленными в рабочей части продольными направляющими. Указанные стойки передних шарниров на узле крепления державки соединены с кареткой жестко, а стойка шарниров хвостовой части узла крепления соединена с этой же кареткой с помощью шарнира и снабжена механизмом изменения ее длины и дополнительным автономным приводом, при этом указанная каретка со стойками посредством введенных дополнительно вертикальных направляющих установлена на каретке, размещенной на указанных продольных направляющих. Технический результат заключается в повышении жесткости устройства, точности позиционирования модели в рабочей части аэродинамической трубы и упрощении управления. 2 ил.

Формула изобретения RU 2 708 681 C1

Устройство для изменения положения модели в рабочей части аэродинамической трубы, содержащее узел крепления державки с моделью, выполненный с возможностью поворота державки вокруг продольной оси, две пары шарниров, размещенных симметрично относительно вертикальной плоскости на узле крепления в двух точках, разнесенных по его длине, причем шарниры, размещенные на его хвостовой части, смещены по вертикали относительно его продольной оси на расстояние, соответствующее его максимальному повороту в вертикальной плоскости, и стойки обтекаемой формы, соединенные с одной стороны с указанными шарнирами, а с другой стороны - с каретками, взаимодействующими с автономными приводами их перемещения и закрепленными в рабочей части продольными направляющими, отличающееся тем, что указанные стойки передних шарниров на узле крепления державки соединены с кареткой жестко, а стойка шарниров хвостовой части узла крепления соединена с этой же кареткой с помощью шарнира и снабжена механизмом изменения ее длины и дополнительным автономным приводом, при этом указанная каретка с соединенными с ней стойками посредством введенной дополнительно вертикальной направляющей установлена на каретке, размещенной на указанных продольных направляющих.

Документы, цитированные в отчете о поиске Патент 2019 года RU2708681C1

УСТРОЙСТВО ДЛЯ ИЗМЕНЕНИЯ ПОЛОЖЕНИЯ МОДЕЛИ В РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ 2016
  • Глазунов Виктор Аркадьевич
  • Алёшин Александр Константинович
  • Габутдинов Наиль Рамилевич
  • Рашоян Гагик Володяевич
  • Скворцов Сергей Александрович
  • Кондратьев Игорь Михайлович
  • Козловский Виктор Андреевич
  • Лагутин Вячеслав Иванович
  • Игумнов Владимир Константинович
RU2629696C1
СТЕНД ДЛЯ ОПРЕДЕЛЕНИЯ ВРАЩАТЕЛЬНЫХ ПРОИЗВОДНЫХ АЭРОДИНАМИЧЕСКИХ СИЛ И МОМЕНТОВ МОДЕЛИ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ 2012
  • Долгополов Александр Андреевич
  • Белоцерковский Антон Николаевич
  • Вишневский Геннадий Анатольевич
  • Маслов Лев Алексеевич
  • Морозов Виктор Петрович
  • Соколянский Владимир Петрович
  • Мерзликин Юрий Юрьевич
  • Захарченко Юрий Александрович
  • Филимонов Александр Алексеевич
  • Вознюк Александр Дмитриевич
  • Константинов Юрий Иванович
  • Волостных Валентин Никитович
  • Карпенкова Любовь Васильевна
  • Брусов Василий Андреевич
  • Чижов Дмитрий Александрович
  • Меньшиков Алексей Сергеевич
  • Авраменко Константин Юрьевич
  • Кобец Дмитрий Александрович
  • Путин Юрий Аркадьевич
RU2515127C1
В.А
Козловский, А.П
Косенко, В.И
Лагутин и др
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Космонавтика и ракетостроение, ЦНИИмаш, 2016, вып.5(90)
US 5365782 A1 22.11.1994.

RU 2 708 681 C1

Авторы

Алёшин Александр Константинович

Глазунов Виктор Аркадьевич

Козловский Виктор Андреевич

Кондратьев Игорь Михайлович

Лагутин Вячеслав Иванович

Макушин Александр Васильевич

Надеждин Алексей Евгеньевич

Рашоян Гагик Володяевич

Даты

2019-12-11Публикация

2019-04-22Подача