Изобретение относится к области вооружений и может быть использовано в многофункциональных взрывателях для повышения безотказности изделия при попадании и пробитии прочных преград, что обеспечивает их функционирование при установках на заданное действие (контактное, контактное замедленное, дистанционное).
Безотказность обеспечивает независимость эффективности действия взрывателя от возможного влияния различных внешних и внутренних факторов (погодных условий, неблагоприятных условий встречи с преградой, случайных отклонений параметров и допусков на изготовление деталей механизмов, условий и срока хранения взрывателя до момента его применения).
Повышенная безотказность достигается за счет высокой унификации отработанных узлов и деталей, идентичных условий отработки, постоянного увеличения статистических данных по безотказности действия в условиях полигонных испытаний и боевого применения, в том числе в составе новых боеприпасов, а также за счет применения современных нанотехнологий.
Элементная база многофункциональных взрывателей осколочно-фугасных снарядов танковых пушек при попадании в преграду (цель) находится под воздействием механического удара одиночного действия с пиковым ударным ускорением 150000 м/с и длительностью действия 0,1-2 мс. Наиболее подвержены пиковым механическим ударам полупроводниковые приборы, входящие в состав электронного блока многофункционального взрывателя. Это приводит к нарушению функционирования и отказам аппаратуры за счет механических деформаций и разрушений [1, 2].
Часто используемым способом защиты взрывателей от ударных воздействий является заливка его электронных компонентов полимерными компаундами.
Из известных наиболее близким по технической сущности является способ защиты аппаратуры от ударных воздействий, реализованный в устройстве для защиты от механических воздействий [3], согласно которому пакет печатных плат устанавливают на амортизирующих прокладках внутри одного корпуса, который заполняют дискретными рабочими средами. Корпус выполняют деформируемым и размещают в другом жестком корпусе, пространство между корпусами заполняют демпфирующим материалом - полимерным компаундом.
Однако этот способ не позволяет обеспечить надежное функционирование электронного блока (2) многофункционального взрывателя при ударных и вибрационных воздействиях при попадании в преграду (цель), так как демпфирующий материал прототипа, имеет невысокую прочность. Применение демпфирующего материала прототипа приводит к тому, что при ударе о преграду происходит разрушение полупроводниковых приборов и электронный блок выходит из строя, не обеспечивая тем самым надежное срабатывание взрывателя при установке на заданное действие.
Техническим результатом заявляемого изобретения является расширение области применения и повышение безотказности многофункционального взрывателя после попадания и пробития прочной преграды с целью поражения укрытой цели.
Сущность предлагаемого способа заключается в том, что радиоэлектронные элементы электронного блока (2) размещаются в корпусе взрывателя (1), внутренний объем которого заполняют демпфирующим материалом, отличным от полимерного компаунда, используемого в настоящее время.
Известна заливка радиоэлектронных элементов полимером «Виксинт ПК-68». Однако «Виксинт ПК-68» имеет малое значение модуля упругости (40 Мпа), что не обеспечивает необходимые значения ударопрочности и удароустойчивости взрывателя при пробитии преграды.
Согласно предлагаемому изобретению в качестве демпфирующего материала применяют композит с высокой прочностью, жесткостью и твердостью, включающий в себя полимер с небольшим процентным добавлением многослойных углеродных нанотрубок (15).
Цель изобретения - создание нанокомпозита для защиты радиоэлектронных элементов от ударных воздействий, обладающего большим коэффициентом поглощения упругих волн и значительным коэффициентом модуля упругости.
Для реализации цели необходимо изготовить композит заливки электронного блока (2) в состав которого входят полимер и многослойные углеродные нанотрубки (15). Углеродные нанотрубки имеют значения модуля упругости на один два порядка выше, чем у стали или иридия. Небольшое процентное добавление углеродных нанотрубок повышает модуль упругости нанокомозита до 125 МПа, при этом коэффициент поглощения упругих волн остается практически без изменения.
На фиг. 1 показана конструкция многофункционального взрывателя, радиоэлектронные элементы которого залиты нанокомпозитной заливкой на основе полимера «Виксинт ПК-68» с 6% добавлением многослойных углеродных нанотрубок «Деалтом» (15).
Многофункциональный взрыватель включает в себя следующие основные элементы:
1 - корпус;
2 - электронный блок с нанокомпозитной заливкой;
3 - приемная катушка;
4 - металлический защитный кожух;
5 - гайка;
6 - колодка;
7 - предохранительно-детонирующее устройство;
8 - детонатор;
9 - поддон;
10 - гильза;
11 - жало с пружиной;
12 - поворотная втулка;
13 - резиновая прокладка;
14 - полимерный кожух;
15 - углеродные нанотрубки.
Электронный блок с нанокомпозитной заливкой на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных нанотрубок «Деалтом» имеет большой коэффициент поглощения волновой энергии и значительный модуль упругости, обеспечивая тем самым необходимые значения ударопрочности и удароустойчивости электронного блока при попадании и пробитии прочной преграды и безотказность взрывателя в целом.
Список использованных источников:
1. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование / под ред. А.И. Коробова. - Москва: Радио и связь, 2002. - 272 с.
2. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств - Техносфера, 2005. - 504 с.
3. Иванов А.В., Ильин С.Л. Устройство для защиты от механических воздействий. - ФИПС. Патент на изобретение №2302091 от 27.06.2007 Бюл. №18.
название | год | авторы | номер документа |
---|---|---|---|
НАНОКОМПОЗИТ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК ДЛЯ ЗАЩИТЫ РАДИОЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ ОТ УДАРНОГО УСКОРЕНИЯ | 2015 |
|
RU2604838C2 |
Способ защиты электронных блоков от инерционных ударных и вибрационных воздействий | 2017 |
|
RU2666964C1 |
МНОГОФУНКЦИОНАЛЬНЫЕ НАНОКОМПОЗИТНЫЕ МАТЕРИАЛЫ С ТРЕХМЕРНЫМ АРМИРОВАНИЕМ | 2006 |
|
RU2423394C2 |
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ | 2014 |
|
RU2570003C1 |
КОНТАКТНОЕ ВЗРЫВАТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ ПРОТИВОКОРАБЕЛЬНЫХ РАКЕТ | 2001 |
|
RU2186334C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИЙ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК И ПОЛИОЛЕФИНОВ | 2011 |
|
RU2490204C1 |
Способ изготовления нанокомпозитного имплантата связки сустава | 2019 |
|
RU2744710C2 |
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИМЕРНЫХ СВЯЗУЮЩИХ | 2009 |
|
RU2437902C2 |
ОСКОЛОЧНО-ПУЧКОВЫЙ СНАРЯД "ОТРОЧ" | 2006 |
|
RU2327948C2 |
КИНЕТИЧЕСКИЙ АРТИЛЛЕРИЙСКИЙ СНАРЯД | 2005 |
|
RU2291375C1 |
Изобретение относится к области вооружений и может быть использовано в многофункциональных взрывателях для повышения безотказности изделия при попадании и пробитии прочных преград. Электронный блок содержит нанокомпозитную заливку на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных трубок «Деалтом». Добавление углеродных нанотрубок повышает модуль упругости нанокомозита до 125 МПа, при этом коэффициент поглощения упругих волн остается практически без изменения. Обеспечивается защита радиоэлектронных элементов от ударных воздействий. 1 ил.
Способ повышения безотказности головного многофункционального взрывателя при пробитии прочных преград, отличающийся тем, что электронный блок многофункционального взрывателя содержит нанокомпозитную заливку на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных нанотрубок «Деалтом», имеет большой коэффициент поглощения волновой энергии и модуль упругости до 125 МПа, обеспечивая тем самым необходимые значения ударопрочности и удароустойчивости электронного блока при попадании и пробитии прочной преграды и безотказность взрывателя в целом.
САВИЦКИЙ В.Я | |||
и др | |||
"Оценка возможности повышения безотказности взрывателя путем упрочнения полимерной заливки радиоэлементов", Известия ТулГУ Технические науки, 2016, Вып | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
ГОЛОВНОЙ НЕКОНТАКТНЫЙ ВЗРЫВАТЕЛЬ ДЛЯ БОЕПРИПАСОВ РАЗРЫВНОГО ДЕЙСТВИЯ | 2009 |
|
RU2415377C1 |
НАНОКОМПОЗИТ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК ДЛЯ ЗАЩИТЫ РАДИОЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ ОТ УДАРНОГО УСКОРЕНИЯ | 2015 |
|
RU2604838C2 |
КРЕМНИЙОРГАНИЧЕСКИЙ ЭЛАСТИЧНЫЙ ФОРМОВОЧНЫЙ СОСТАВ | 2010 |
|
RU2443733C1 |
УСТРОЙСТВО ДЛЯ ЗАЩИТЫ ОТ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ | 2005 |
|
RU2302091C2 |
ПОЛИМЕРНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ НАНОТРУБКИ | 2006 |
|
RU2389739C2 |
DE 102010041594 A1, 29.04.2012 |
Авторы
Даты
2019-12-30—Публикация
2018-11-30—Подача