Способ прогнозирования механических свойств стоматологических материалов на полимерной основе по данным сканирующей электронной микроскопии Российский патент 2020 года по МПК A61C19/00 

Описание патента на изобретение RU2712043C1

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для оценки физических и механических свойств стоматологических материалов на полимерной основе в зависимости от микроструктурных особенностей материала.

Из существующего уровня техники известен способ оценки прочностных параметров полимерных восстановительных материалов по ГОСТ Р 31574-2012, предполагающий испытания на диаметральный разрыв, изгиб и адгезионную прочность. Испытания заключаются в заполнении специальных форм исследуемым материалом, затем его отсвечивание светом полимеризационной лампы для получения образцов установленной формы и их дальнейшее выдерживание в термостате. В дальнейшем применяется специальная разрывная машина, на которой проводятся испытания на прочность.

Известен способ оценки физических и механических свойств цементов стоматологических на водной основе по ГОСТ 31578-2012, предполагающий определение прочности материала на сжатие, который заключается в заполнении материалом специальной формы с последующим выдерживанием образца в термостате. В дальнейшем применяется специальная разрывная машина, на которой проводятся испытания на прочность.

Наиболее близким к заявленному техническому решению является держатель образца для сканирующего электронного микроскопа [пат. RU 58027], который содержит подложку, толщиной 5 мм, выполненную в форме круга диаметром 12,5 мм, цилиндр, основу держателя с резьбовым отверстием для стержня замены образца, посадочный винт подложки, посадочный винт цилиндра, винт установки высоты образца. Устройство позволяет фиксировать образцы длинных трубчатых костей значительных размеров и выполнять их исследования одновременно при помощи сканирующего электронного микроскопа и электронно-зондового микроанализатора.

Недостатками данных технических решений является необходимость в специальном дорогостоящем оборудовании, которое является неотъемлемым при проведении данных испытаний, а также существенная трудоемкость метода, предполагающая длительную подготовку и большой объем необходимых образцов, что также вызывает сложности его применения. Кроме того, на подготовку образцов расходуется большой объем материала, что экономически нецелесообразно и не позволяет применять данный метод повсеместно.

Что касается держателя образца, то нет необходимости применения специализированных форм для просмотра нашего получаемого образца, так как его размер подходит для стандартной формы, входящей в комплект сканирующего электронного микроскопа.

Технический результат - возможность оценки физических и механических свойств стоматологических материалов на полимерной основе с использованием образцов малого объема, размером не более 0,5 см3., не прибегая к лабораторным измерениям.

Для достижения технического результата в низковакуумном электронном микроскопе исследовали сколы стоматологических материалов размером не более 0,7 см. Предварительная подготовка осуществлялась путем отверждения синим светом полимеризационной лампы в течение 5-40 сек. Далее готовили скол, выполняя насечку алмазным диском на глубину не менее 0,1 мм и не более 0,3 мм в самом широком месте образца. При помощи стоматологического хирургического долота и молоточка раскалывали образец по отмеченной насечке так, чтобы получилась площадь скола пломбировочного материала с диаметром просматриваемой поверхности не менее 0,3 и не более 0,5 мм.

Полученный образец скола полимерного восстановительного материала изучали с помощью сканирующего электронного микроскопа модели «JEOL JSM - 6380 LV», Япония, и получали электронное изображение при увеличении от ×1000 до ×100000.

На полученное электронное изображение стандартного размера накладывали сетку, с использованием стандартных процедур распознавания изображений интерфейса микроскопа, размечая на его на 15 равных прямоугольников, имеющую три линии по горизонтали и пять по вертикали. Такая разметка позволяет получить единый шаблон и стандартизировать расчеты длины частиц и расстояния между этими частицами. В качестве частицы в нашем исследовании понимали скопление материала, визуализируемое как отдельный конгломерат (фиг. 1;1) [Физическая и коллоидная химия. Основные термины и определения. Учебное пособие Авторы: Белопухов С.Л., Старых изд. ООО «Проспект» 2015 год https://books.google.ru/books?id=xZztCgAAQBAJ&pg=PT105&dq=] или [Горобинский М.А. Наноматериалы и их применение https://scienceforum.ru/2017/article/2017030827].

Измерения проводили в микронах (μm, мкм, микрометр) и пересчитывали в нанометры. Измеряли длину частиц (фиг. 1;1) и расстояния между частицами (фиг. 1;2)

За размер частицы принимали максимальную хорду в горизонтальном направлении [ГОСТ 23402-78 Порошки металлические. Микроскопический метод определения размеров частиц (с Изменением N 1) Постановление Госстандарта СССР от 22.12.1978 N 3410 ГОСТ от 22.12.1978 N 23402-78].

Измерения проводили в пятнадцати полях сетки, частицу считали принадлежащей к рассматриваемому полю, если она расположена на нижней горизонтальной границе поля. Частицы, обнаруженные на остальных участках поля сетки, не учитывали.

Расстояние между частицами, находящимися на горизонтальных линиях измеряли параллельно горизонтальным линиям сетки. Измерения вносили в таблицу.

Параллельно выполняли оценку физико-механических свойств образцов того-же материала в соответствии с ГОСТ Р 31574-2012, включавшие определение прочностных параметров: максимальной нагрузки, необходимой для разрушения образца материала при диаметральном разрыве, изгибе и адгезии, а также согласно ГОСТ 31578-2012, включающего определение прочностных параметров при сжатии. Вычисления проводились в Ньютонах.

Статистическая обработка полученных данных, внесенных в протокол исследования, позволила выявить следующие закономерности.

С использованием корреляционного и дисперсионного анализа установлено, что при 90% уровне статистической значимости вероятности различий между массивами, данные величины,

характеризующих физико-механические свойства материалов, имеют зависимость от размера частиц и расстояний между частицами.

В процессе выполнения исследовательской работы был предложен коэффициент оценки прочностных характеристик Кпр

Кпр=L / S, где

L - среднее значение расстояния между частицами, рассчитанное в 15-ти квадратах;

S - среднее значение размера частицы, рассчитанное в 15-ти квадратах.

Установлено, что при уровне статистической значимости более 99%, оцененной при помощи t-критерия Стьюдента, можно выделить три непересекающихся диапазона данных (табл. 1).

Только размер частиц или только расстояние между частицами не позволяет сделать вывод о прочностных характеристиках, изменение этих параметров связано с физико-химическими свойствами на уровне тенденций.

Величина предложенного нами коэффициента статистически значимо связана с параметрами физико-химических свойств материала. На основании выше изложенного можно сформулировать следующие правила:

если величина коэффициента Кпр менее 0,2, то прочностные параметры материала при сжатии будут более 4464,09 Н, при диаметральном разрыве 1060,08 Н, при изгибе 22,71 Н, величина адгезии 122,51 Н;

если величина коэффициента Кпр лежит в диапазоне от 0,2 до 1, то прочностные параметры материала при сжатии будут составлять от 4464,08 до 3158,19 Н, при диаметральном разрыве от 1060,07 до 918,32 Н, при изгибе от 22,70 до 20,71 Н, величина адгезии от 122,50 до 60,15 Н;

если величина коэффициента Кпр более 1, то прочностные параметры материала при сжатии будет составлять менее 3158,18 Н, при диаметральном разрыве менее 918,31 Н, при изгибе менее 20,70 Н, величина адгезии менее 60,14 Н.

Таким образом, нами предложен коэффициент, который позволяет прогнозировать физико-химические свойства стоматологических

материалов без проведения испытаний по ГОСТ Р 3157 4-2012 и ГОСТ 3157 8-2012. Для осуществления способа необходимо малое количество материала, на порядок меньшее, чем для проведения лабораторных испытаний физико-химических свойств.

Пояснения к фигурам:

Фигура 1. Электронное изображение образца скола полимерного пломбировочного материала

1. Размер частицы (мкм)

2. Расстояние межу частицами (мкм).

Похожие патенты RU2712043C1

название год авторы номер документа
СПОСОБ УЛУЧШЕНИЯ АДГЕЗИОННЫХ И ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ПОЛИМЕРНЫХ ПЛОМБИРОВОЧНЫХ МАТЕРИАЛОВ И БОНДОВ 2015
  • Кунин Анатолий Абрамович
  • Моисеева Наталья Сергеевна
RU2594255C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО МАТЕРИАЛА НА ОСНОВЕ УГЛЕРОДА И КОМПОЗИТНЫЙ МАТЕРИАЛ 2014
  • Бланк Владимир Давыдович
  • Мордкович Владимир Зальманович
  • Овсянников Данила Алексеевич
  • Перфилов Сергей Алексеевич
  • Поздняков Андрей Анатольевич
  • Попов Михаил Юрьевич
  • Прохоров Вячеслав Максимович
RU2556673C1
ПОРИСТАЯ ОСНОВА ДЛЯ ПЕРЕВЯЗОЧНОГО СРЕДСТВА 2019
  • Парамонов Борис Алексеевич
  • Алексеев Андрей Анатольевич
  • Андреев Дмитрий Юрьевич
  • Апель Павел Юрьевич
  • Дмитриев Николай Сергеевич
  • Нечаев Александр Николаевич
  • Щеголев Дмитрий Владиславович
  • Ястребов Павел Анатольевич
RU2717312C1
СТОМАТОЛОГИЧЕСКАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ АДГЕЗИЕЙ К ТКАНЯМ ЗУБА 2012
  • Киреев Вячеслав Васильевич
  • Посохова Вера Федоровна
  • Филатов Сергей Николаевич
  • Четверикова Анастасия Ивановна
  • Чистяков Евгений Михайлович
  • Чуев Владимир Петрович
RU2509551C2
АРМИРОВАННЫЕ ВОЛОКНОМ КОМПОЗИТНЫЕ МАТЕРИАЛЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2007
  • Лассила Липпо В.Й.
  • Валлитту Пекка
  • Гароуши Суфьян
  • Айрола Карри
RU2449772C2
Стоматологическая заготовка для фрезерования и способ ее получения 2020
  • Мацуо Такума
  • Соши Анна
  • Нагасава Юко
  • Акидзуми Хиронобу
RU2807748C2
СПОСОБ ИССЛЕДОВАНИЯ БИОСОВМЕСТИМОСТИ СИНТЕТИЧЕСКОГО МАТЕРИАЛА МЕДИКО-БИОЛОГИЧЕСКОГО НАЗНАЧЕНИЯ С БИОЛОГИЧЕСКИМИ ТКАНЯМИ 2007
  • Коновалова Ольга Анатольевна
  • Салахов Мякзюм Хамимулович
RU2381485C2
Полиэтилентерефталатная нить и способ её получения 2020
  • Шибанова Анна Викторовна
  • Цобкалло Екатерина Сергеевна
RU2734673C1
СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕГО РАЗМЕРА АГРЕГАТОВ ЧАСТИЦ НАПОЛНИТЕЛЯ, ИХ КОНЦЕНТРАЦИИ И РАСПРЕДЕЛЕНИЯ В ОБЪЕМЕ ПОЛИМЕРНОЙ МАТРИЦЫ 2008
  • Маланин Михаил Николаевич
  • Пахомов Павел Михайлович
  • Хижняк Светлана Дмитриевна
RU2393458C2
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ПОЛИФЕНИЛЕНСУЛЬФИДА 2023
  • Саморядов Александр Владимирович
  • Усенко Евгений Сергеевич
RU2814520C1

Иллюстрации к изобретению RU 2 712 043 C1

Реферат патента 2020 года Способ прогнозирования механических свойств стоматологических материалов на полимерной основе по данным сканирующей электронной микроскопии

Изобретение относится к стоматологии. Предложен способ прогнозирования механических свойств стоматологических материалов на полимерной основе по данным сканирующей электронной микроскопии, который включает использование образца скола полимерного материала с помощью сканирующего электронного микроскопа, при этом изображение размечают при помощи сетки на 15 равных прямоугольников, имеющей 3 линии по горизонтали и 5 по вертикали, проводят измерения размера частиц и расстояния между ними, принимая за размер максимальную хорду в горизонтальном направлении, рассчитывают коэффициент оценки прочностных характеристик Кпр = L / S, где L – среднее значение расстояния между частицами, рассчитанное в 15-ти квадратах, S – среднее значение размера частицы, рассчитанное в 15-ти квадратах. Если Кпр<0,2, то прочностные параметры материала при сжатии будут > 4464,09 Н, при диаметральном разрыве 1060,08 Н, при изгибе 22,71 Н, величина адгезии 122,51 Н; если Кпр лежит в диапазоне 0,2-1, то параметры будут составлять 4464,08-3158,19 Н, 1060,07-918,32 Н, 22,70-20,71 Н, 122,50-60,15 Н соответственно; если Кпр>1, то параметры будут составлять < 3158,18 Н, 918,31 Н, 20,70 Н, 60,14 Н соответственно. Способ позволяет оценить физические и механические свойств стоматологических материалов на полимерной основе с использованием образцов малого объема, размером не более 0,5 см3, не прибегая к лабораторным измерениям. 1 ил., 1 табл.

Формула изобретения RU 2 712 043 C1

Способ прогнозирования механических свойств стоматологических материалов на полимерной основе по данным сканирующей электронной микроскопии, включающий использование образца скола полимерного материала с помощью сканирующего электронного микроскопа, отличающийся тем, чтоизображение размечают при помощи сеткина 15 равных прямоугольников, имеющей три линии по горизонтали и пятьпо вертикали, проводят измерения размера частиц и расстояния между ними,принимая за размермаксимальную хорду в горизонтальном направлении,расчитывают коэффициент оценки прочностных характеристик Кпр по формуле Кпр = L / S, где L – среднее значение расстояния между частицами, рассчитанное в 15-ти квадратах, S – среднее значение размера частицы, рассчитанное в 15-ти квадратах;

если величина коэффициента Кпр менее 0,2, то прочностные параметры материала при сжатии будут более 4464,09 Н, при диаметральном разрыве 1060,08 Н,при изгибе 22,71 Н, величина адгезии 122,51 Н;

если величина коэффициента Кпр лежит в диапазоне от 0,2 до 1, то прочностные параметры материала при сжатии будут составлять от 4464,08 до 3158,19 Н, при диаметральном разрыве от 1060,07до 918,32 Н,при изгибе от 22,70 до 20,71Н, величина адгезии от 122,50 до 60,15 Н;

если величина коэффициента К пр более 1, то прочностные параметры материала при сжатии будет составлять менее 3158,18 Н, при диаметральном разрыве менее 918,31 Н,при изгибе менее 20,70Н, величина адгезии менее 60,14 Н.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712043C1

Электрический светильник 1939
  • Компан А.И.
SU58027A1
Приспособление для определения антрума во время операции на сосцевидном отростке 1932
  • Шабалин Ф.Я.
SU31574A1
Технические требования
Методы испытаний
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
Антисептический индивидуальный перевязочный пакет 1932
  • Воскресенский И.Д.
SU31578A1
Технические требования
Методы испытаний
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1

RU 2 712 043 C1

Авторы

Моисеева Наталья Сергеевна

Даты

2020-01-24Публикация

2018-12-20Подача