Изобретение относится к антенной технике и при известных направлениях на источники помех может быть использовано для их пространственного подавления путем формирования провалов в диаграммах направленности (ДН) активных фазированных антенных решеток (АФАР), в направлениях действия источников помех.
Управление формой ДН АФАР может осуществляться путем воздействия как на амплитуды и фазы излучателей [1 - Мануилов Б.Д., Башлы П.Н., Безуглов Ю.Д. Алгоритм управления многофункциональными антенными решетками на основе метода парциальных диаграмм // Антенны, 2005 г., №9, стр. 72-77], так и только на фазы излучателей [2 - Кондратьев А.С. Метод фазового синтеза антенных решеток с учетом дополнительных требований к форме диаграммы направленности // Радиотехника и электроника, 1990, №12, стр. 2530-2540].
Примененный в работе [1] метод парциальных диаграмм на основе функций Котельникова дает возможность гибкого управления формой ДН. В [1] с его помощью синтезированы ДН с пониженным (-40 дБ) уровнем боковых лепестков, косекансная ДН, столообразная ДН и двухлепестковая ДН. Метод позволяет формировать провалы в ДН в направлении источников помех. Достоинство метода - исключительно высокое быстродействие, так как матрица системы уравнений унитарная и токи находятся непосредственным вычислением. Основным недостатком метода является то, что он применим только к решеткам с прямоугольной формой раскрыва.
В работе [2] предложен итерационный метод фазового синтеза антенных решеток (АР) по заданной комплексной ДН, позволяющий учитывать дополнительные требования к форме синтезируемой ДН, в частности, формировать нули ДН в выбранных угловых направлениях. Метод может быть применен к АР с произвольной формой раскрыва. Основным недостатком метода является относительно медленное быстродействие, поскольку на каждом шаге итерационного процесса производится сравнение заданной и реализуемой ДН.
К способам амплитудно-фазового управления АФАР относится известный способ формирования провалов в ДН АР в направлениях источников помех, пригодный для АР с произвольной формой раскрыва, обеспечивающий при известных направлениях на источники помех максимизацию отношения мощности сигнала к мощности помех и шума (ОСПШ) на входе приемника [3 - Cheng David K. Optimization techniques for antenna arrays // Proc. IEEE, 1971, v. 59, №12, pp. 1664-1674]. Данный способ является ближайшим аналогом (прототипом) заявляемого.
Вначале рассмотрим математическое обоснование существа способа [3].
ОСПШ (рассмотрим одномерный случай) можно представить в следующем виде:
где J - вектор-столбец комплексных амплитуд токов в элементах АР;
* (звездочка) - знак эрмитова сопряжения матрицы и комплексного сопряжения скалярной величины;
ƒ(θ0) - ДН АР в направлении максимума луча;
ƒ(θ) - ДН АР;
T(θ) - функция распределения помех в пространстве;
А и В - эрмитовы матрицы порядка N(N - количество элементов АР) с элементами
где ƒn(θ0) - значение ДН n-го элемента в направлении максимума луча.
Из (1) видно, что и числитель, и знаменатель в (1) являются эрмитовыми формами. Из (2) видно, что ранг матрицы А равен единице. Эрмитова форма в знаменателе (1) является положительно определенной, что обусловлено ее физическим смыслом (это - мощность).
В [3] показано, что при соблюдении указанных выше условий вектор токов, максимизирующий ОСПШ (1), может быть найден по формуле
где Т - знак транспонирования.
Через f обозначен вектор-столбец значений ДН элементов ƒm(θ0) в направлении максимума луча.
Такой вид выражения (3) и (4) имеют при идентичности каналов излучателей.
Диаграмма направленности АР при этом вычисляется по формуле
Существо данного способа, как совокупности операций над материальными объектами, состоит в следующем. Сигналы, принятые каждым излучателем, взвешивают с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы и вектор-столбец сигналов, падающих с направления главного луча.
Недостатком данного способа является то, что какой бы ни была исходная ДН (косекансная, чебышевская, секторная или соответствующая равномерному возбуждению), в процессе формирования провалов в ДН происходит также максимизация ОСПШ, а синтезированные ДН не сохраняют свои особенности.
Продемонстрируем это на примере линейной АР, содержащей N изотропных элементов (N=21), расположенных с шагом d равным 0.5λ, λ - длина волны. Примем, что угол ориентации луча, отсчитываемый от линии расположения излучателей, θ0 равен 70°. Присвоим весам значения
обеспечивающие формирование ДН, все боковые лепестки которой имеют уровень минус 19 дБ.
Штриховой линией на фигуре 1 изображена чебышевская ДН, рассчитанная по формуле
Непрерывной тонкой линией на фигуре 1 изображена ДН решетки, оптимизированной из равномерно возбужденного состояния, рассчитанная по формулам (3)-(5) при действии помех с направлений θ1 равного 20° и θ2 равного 77.5°, здесь и далее интенсивность помех задавалась равной 108. Сигнал принимается с направления θ0 равного 70°. В направлениях источников помех сформированы глубокие (глубже минус 150 дБ) провалы.
Формирование провалов в ДН с исходным чебышевским распределением (6) моделировалось по формуле
причем элементы матрицы D имели вид
а ДН рассчитывалась по формуле
Функция распределения помех Т(θ) при расчетах задавалась выражением:
где Р - интенсивность помех, а единица характеризует собственные шумы системы.
Оптимизированная по формулам (8)-(10) ДН с исходным чебышевским распределением (6) представлена на фигуре 1 жирной линией. Очевидно, что глубокие провалы в ДН формируются, однако она не является чебышевской.
Таким образом, формирование провалов в направлениях источников помех (оптимизация) в соответствии с (4) либо (8) не сохраняет особенности исходной ДН.
Технической проблемой, на решение которой направлен предлагаемый способ, является устранение недостатка известного способа, то есть сохранение при формировании провалов в ДН в направлении источников помех основных свойств исходной ДН.
Для решения указанной технической проблемы предлагается способ формирования провалов в диаграммах направленности активных фазированных антенных решеток в направлениях источников помех, основанный на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы и вектор-столбец сигналов, падающих с направления главного луча.
Согласно изобретению при определении вектора весовых коэффициентов находят также матрицу второй эрмитовой формы при отсутствии помех и при определении вектора-столбца весовых коэффициентов используют обратную матрицу второй эрмитовой формы, матрицу второй эрмитовой формы при отсутствии помех и вектор-столбец сигналов, падающих с направления главного луча
Проведенный сравнительный анализ заявленного способа и прототипа показывает, что в заявленном способе введены две новые операции:
- нахождение матрицы второй эрмитовой формы при отсутствии помех;
- домножение на нее обратной матрицы второй эрмитовой формы.
Техническим результатом является возможность формирования провалов в диаграмме направленности АФАР при сохранении в основном исходной формы диаграммы направленности за счет взвешивания сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы, матрицу второй эрмитовой формы при отсутствии помех и вектор-столбец сигналов, падающих с направления главного луча.
Сочетание отличительных признаков и свойств предлагаемого способа из литературы не известны, поэтому он соответствует критериям новизны и изобретательского уровня.
Возможности предлагаемого способа иллюстрируют фигуры 1-6.
На фигуре 1 продемонстрированы результаты оптимизации чебышевской ДН и ДН, полученной при равномерном возбуждении элементов.
На фигуре 2 продемонстрирована работа предложенного способа в случае чебышевской ДН.
На фигуре 3 продемонстрирована работа предложенного способа в случае косекансной ДН.
На фигуре 4 продемонстрирована работа предложенного способа в случае секторной ДН.
На фигуре 5 продемонстрирована работа предложенного способа в случае косекансной ДН при попадании помехи в пределы главного луча.
На фигуре 6 продемонстрирована работа предложенного способа в случае секторной ДН при попадании помехи в пределы главного луча.
При осуществлении данного способа выполняют следующую последовательность операций:
1. Определяют исходную ДН АР;
2. Находят матрицы первой и второй эрмитовых форм;
3. Выполняют обращение матрицы второй эрмитовой формы;
4. Находят матрицу второй эрмитовой формы при отсутствии помех;
5. Домножают матрицу второй эрмитовой формы при отсутствии помех на обратную матрицу второй эрмитовой формы;
6. Вычисляют вектор весовых коэффициентов;
7. Вводят рассчитанные весовые коэффициенты непосредственно в каналы АР.
Рассмотрим предлагаемый способ формирования провалов в диаграммах направленности АФАР в направлениях источников помех. Вектор весовых коэффициентов, обеспечивающий формирование провалов в направлении источников помех, находим с помощью выражения:
Элементы матрицы второй эрмитовой формы D0 при отсутствии помех определены выражением (9) при условии Т(θ)=1, то есть:
Диаграмма направленности при этом рассчитывается с помощью выражения (10).
Предположим, что каждый излучатель АР подключен к высокочастотному сумматору через индивидуальный фазовращатель и аттенюатор. Управляющие входы каждого фазовращателя и аттенюатора подключены к соответствующему выходу вычислителя амплитуд и фаз. На входы вычислителя поступает информация о форме ДН и направлении прихода сигнала θ0, на основании которой он вводит в каждый фазовращатель и аттенюатор соответствующие значения фаз и амплитуд. При поступлении информации о наличии помеховых сигналов вычислитель амплитуд и фаз определяет по формуле (11) весовые коэффициенты, которые также вводятся в фазовращатель и аттенюатор каждого канала. При этом на выходе высокочастотного сумматора формируется ДН с провалами в направлениях источников помех при сохранении в основном исходной формы Д Н.
На фигуре 2 штриховой линией изображена исходная (чебышевская) ДН с ориентацией максимума в направлении θ2=70°, а непрерывной линией - та же чебышевская, с провалами в направлениях первого бокового лепестка θ2 равном 77,5° и одного из дальних θ1 равном 20°, по которым действуют помехи. Очевидно, что вне областей провалов ДН при формировании провалов сохраняет форму.
Аналогичные выводы можно сделать и для других форм ДН. На фигуре 3 жирными точками изображена косекансная ДН. Она сформирована по методу парциальных диаграмм [1]. Мелкими точками нанесена функция косеканс. Непрерывная линия показывает, что в результате оптимизации в соответствии с (11) в косекансной ДН сформировались глубокие провалы в направлениях первых боковых лепестков при θ1 = 82.5° и θ2 = 155° при минимальных искажениях исходной ДН.
На фигуре 4 пунктиром изображена исходная секторная ДН, сформированная, как и в случае косекансной ДН, с использованием метода парциальных диаграмм. Непрерывной линией изображена оптимизированная с помощью выражения (11) секторная ДН с провалами в направлениях двух наибольших лепестков. Очевидно, и в данном случае в направлении источников помех θ1 равном 44° и θ2 равном 110° сформировались глубокие провалы при минимальных искажениях исходной ДН.
Следует отметить, что в тех случаях, когда помеха попадает в пределы косекансного или расширенного главного луча катастрофического изменения ДН не происходит. Это следует из фигур 5 и 6, на первой из которых продемонстрировано формирование глубокого нуля в направлении помехи, действующей с направления θ2 равного 130° на АФАР с косекансной ДН. На фигуре 6 продемонстрирован случай формирования провала в направлении помехи, попадающей в пределы главного луча АФАР с секторной ДН.
Приведенные примеры свидетельствуют о том, что введение двух новых операций:
- нахождение матрицы второй эрмитовой формы при отсутствии помех;
- домножение на нее обратной матрицы второй эрмитовой формы;
обеспечивает формирование провалов в ДН в направлении источников помех при сохранении в основном исходной формы диаграммы направленности.
Платой за сохранение основных свойств (формы) исходной ДН является уменьшение, по сравнению с прототипом, отношения мощности сигнала к сумме мощностей шума и помех.
Таким образом, в результате введения в способ [3] двух новых операций достигается следующий технический результат: возможность формирования провалов в диаграмме направленности АФАР при сохранении в основном исходной формы диаграммы направленности за счет взвешивания сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы, матрицу второй эрмитовой формы при отсутствии помех и вектор-столбец сигналов, падающих с направления главного луча.
Изобретение относится к антенной технике и при известных направлениях на источники помех может быть использовано для их пространственного подавления путем формирования провалов в диаграммах направленности (ДН) активных фазированных антенных решеток (АФАР) в направлениях действия источников помех. Технический результат заключается в возможности формирования провалов в диаграмме направленности АФАР при сохранении, в основном, исходной формы диаграммы направленности. Способ основан на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы и вектор-столбец сигналов, падающих с направления главного луча. При определении вектора-столбца весовых коэффициентов используют также матрицу второй эрмитовой формы при отсутствии помех и при определении вектора-столбца весовых коэффициентов используют обратную матрицу второй эрмитовой формы, матрицу второй эрмитовой формы при отсутствии помех и вектор-столбец сигналов, падающих с направления главного луча. 6 ил.
Способ формирования провалов в диаграммах направленности активных фазированных антенных решеток в направлениях источников помех, при котором взвешивают сигналы, принятые каждым излучателем, с помощью весовых коэффициентов, в соответствии с которым весовые коэффициенты находят с использованием функционала, характеризующего отношение мощности сигнала, принимаемого с заданного направления, образующей первую эрмитову форму, к сумме мощностей шума и помех с известным распределением в пространстве, образующей вторую эрмитову форму, причем для определения вектора-столбца весовых коэффициентов в каналах излучателей используют обратную матрицу второй эрмитовой формы и вектор-столбец сигналов, падающих с направления главного луча, отличающийся тем, что при определении вектора-столбца весовых коэффициентов используют также матрицу второй эрмитовой формы при отсутствии помех и при определении вектора-столбца весовых коэффициентов используют обратную матрицу второй эрмитовой формы, матрицу второй эрмитовой формы при отсутствии помех и вектор-столбец сигналов, падающих с направления главного луча.
ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛОВ В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ | 2011 |
|
RU2579610C2 |
Способ формирования провала в диаграмме направленности антенной решетки | 1989 |
|
SU1712993A1 |
ФАЗОВЫЙ СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛА В ДИАГРАММЕ НАПРАВЛЕННОСТИ ПЛОСКОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ | 2010 |
|
RU2457589C1 |
СПОСОБ ФОРМИРОВАНИЯ ПРОВАЛА В ДИАГРАММЕ НАПРАВЛЕННОСТИ ЧАСТИЧНО АДАПТИВНОЙ АНТЕННОЙ РЕШЕТКИ | 1991 |
|
RU2019012C1 |
Авторы
Даты
2020-02-06—Публикация
2019-04-26—Подача