СОСТАВ ДЛЯ ПОВЕРХНОСТНОГО ЛАЗЕРНОГО УПРОЧНЕНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ Российский патент 2020 года по МПК B23K35/36 B23K26/352 C23C28/00 

Описание патента на изобретение RU2715273C1

Изобретение относится к области химико-термической обработки стальных деталей, в частности, к составу для поверхностного лазерного упрочнения деталей из конструкционных сталей.

Известен состав для лазерного легирования поверхностей деталей из конструкционных сталей, состоящий из окиси хрома, карбида бора и ферросилиция (см. А.С. СССР 1607433, МКИ С23С 12/02). Недостатками этого состава являются неравномерность его распределения по площади (как следствие, неоднородность прочностных показателей) и недостаточная термостойкость.

Ближайшим прототипом заявляемого изобретения является состав для поверхностного лазерного упрочнения деталей из конструкционных сталей, включающий углерод, окись хрома и борный ангидрид (см. патент RU 2345174 С1 от 12.07.2007 г.).

Недостатками состава, описанного в прототипе, является необходимость применения чрезвычайно высоких температур для осуществления реакции окиси хрома с борным ангидридом, т.к. окись хрома плавится при 2265°С, а учитывая очень большую разницу в температурах плавления борного ангидрида (450÷470°С), она будет носить гетерогенный характер и не достигнет полноты прохождения. Возможны также большие потери расплава борного ангидрида вследствие возгонки, т.е. процесс будет трудновоспроизводимым. Кроме того, возможно протекание и других реакций углерода с бором, окиси хрома с углеродом, которые не обеспечат высокой термостойкости покрытий.

Целью заявляемого изобретения является состав для поверхностного лазерного упрочнения деталей из конструкционных сталей, повышающий поверхностную твердость и термостойкость, отличающийся тем, что он состоит из коксующегося термореактивного полимерного состава, состоящего из эпоксидированного новолака (А), триэтаноламинотитаната (Б) и нефтяного пека (В) в соотношении А : Б : В от 70:10:20 до 50:40:10, который отверждается на поверхности металла в виде слоя от 5 до 15 мм при температуре от 120°С до 170°С в течение от 5 до 30 минут и затем подвергается воздействию лазерного луча при температуре до 1200÷ 1300°С в течение от 5 до 20 минут, до образования кокса и нитрида титана, после чего подвергается воздействию лазерного луча при температуре до 1600÷1800°С в течение от 5 до 20 минут до деструкции и удаления кокса и органических примесей.

Пример 1.

В реактор, снабженный обогревом и мешалкой, загружают эпоксидированный новолак (новолачную смолу промышленной марки ЭН-6), представляющий собой продукт эпоксидирования фенолформальдегидного новолака (в отвержденном состоянии имеет коксовое число 45%) (А), температуру повышают до +50°С, затем добавляют триэтаноламинотитанат (промышленная марка ТЭАТ) (Б) и коксующийся нефтяной пек (В) в соотношении А : Б : В=60:25:15. Смесь разбавляют добавкой ацетона до 5%. Приготовленную пастообразную смесь шпателем наносят на упрочняемую поверхность слоем 10 мм (или наливом при большем разбавлении). Затем нанесенный состав отверждают при 150°С в течение 12 минут. Отвержденный состав представляет собой полимер (макромолекула), с прочностью при сжатии 150 МПа, температурой начала деструкции 380°С, после деструкции при 1000°С коксовый остаток ~50%.

Отвержденное покрытие не разрушается под действием колебаний температур от -110°С до +120°С, случайных ударов и может быть подвергнуто лазерному воздействию в любое время после его отверждения.

Воздействие лазерным лучом осуществляют в два этапа. Первый этап - 1250°С 12 минут, в течение которого полимер деструктирует, высвобождая чрезвычайно активные при этой температуре атомы титана, поглощающие также активные атомы азота* (*Поглощение азота титаном при высоких температурах описано во многих работах), и атомы углерода, катализирующие реакцию образования нитрида титана. При этом подвижные атомы азота не рассеиваются благодаря образованию кокса - 50% от исходной массы. Второй этап - 1700°С 7 минут, во время которого деструктирует кокс и все возможные примеси, а на оплавленной поверхности металла образуется слой нитрида титана с примесью карбида титана (имеют температуру плавления ~3000°С), с микротвердостью 1900 кг/мм2 (на уровне алмаза).

Пример 2.

Осуществляют аналогично примеру 1, но соотношение компонентов наносимой смеси А : Б : В=70:10:20, которую наносят слоем 15 мм, отверждают при 120°С в течение 30 минут и подвергают лазерному воздействию при 1200°С в течение 20 минут, а затем 1800°С в течение 5 минут. Микротвердость покрытия 1950 кг/мм2. Термостойкость ~3000°С.

Пример 3.

Осуществляют аналогично примеру 1, но соотношение компонентов берут А : Б : В=50:40:10 и наносят слоем 5 мм, отверждают при 170°С в течение 5 минут и подвергают лазерному воздействию при 1300°С в течение 5 минут, а затем при 1600°С в течение 20 минут. Микротвердость покрытия 1850 кг/мм2. Термостойкость ~3000°С.

Пример 4.

Осуществляют аналогично примеру 1, но лазерному воздействию подвергают при 1800°С в течение 20 минут. Микротвердость покрытия 1950 кг/мм2. Термостойкость ~3000°С.

Похожие патенты RU2715273C1

название год авторы номер документа
СПОСОБ ЛАЗЕРНОГО УПРОЧНЕНИЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ 2019
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Бардушкин Владимир Валентинович
RU2699602C1
Препрег для шликерных покрытий, наносимых методом лазерной наплавки 2020
  • Сычев Александр Павлович
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Бардушкин Владимир Валентинович
  • Сычева Марина Александровна
  • Колесников Игорь Владимирович
  • Лавров Игорь Викторович
RU2737104C1
СПОСОБ ЛАЗЕРНОЙ НАПЛАВКИ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ 2020
  • Сычев Александр Павлович
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
  • Яковлев Виктор Борисович
  • Колесников Игорь Владимирович
RU2735481C1
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2020
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
RU2736289C1
ПРЕПРЕГ 2000
  • Колесников В.И.
  • Васильев И.С.
  • Лапицкий В.А.
  • Сычев А.П.
  • Колесников И.В.
RU2179984C1
Способ формирования высокопрочных покрытий на металлических поверхностях 2019
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
RU2716921C1
СОСТАВ КОМПАУНДА ДЛЯ АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2020
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
RU2737796C1
СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННЫХ ПРЕСС-МАТЕРИАЛОВ 2007
  • Лапицкий Валентин Александрович
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Лапицкий Александр Валентинович
  • Колесников Игорь Владимирович
  • Бардушкин Владимир Валентинович
RU2330051C1
ПОДШИПНИК СКОЛЬЖЕНИЯ С БИНАРНОЙ ПОВЕРХНОСТЬЮ 2007
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Лапицкий Александр Валентинович
RU2337259C1
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНОЙ ПОВЕРХНОСТИ 2015
  • Колесников Владимир Иванович
  • Лапицкий Александр Валентинович
  • Сычев Александр Павлович
  • Новиков Евгений Сергеевич
  • Бардушкин Владимир Валентинович
RU2585151C1

Реферат патента 2020 года СОСТАВ ДЛЯ ПОВЕРХНОСТНОГО ЛАЗЕРНОГО УПРОЧНЕНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ

Изобретение относится к химико-термической обработке стальных деталей, в частности, к составу для поверхностного лазерного упрочнения деталей из конструкционных сталей. Состав содержит термореактивную отверждающуюся и коксующуюся смесь эпоксидированного новолака (А), триэтаноламинотитаната (Б) и нефтяного пека (В) в соотношении А:Б:В от 70:10:20 до 50:40:10. Смесь наносят на поверхность металла слоем от 5 до 15 мм и отверждают при температуре от 120°С до 170°С в течение от 5 до 30 минут. Затем подвергают воздействию лазерного луча при температуре 1200-1300°С в течение от 5 до 20 минут до образования кокса и нитрида титана. После чего воздействуют лазерным лучом до деструкции и удаления кокса и органических примесей. Состав обеспечивает повышение поверхностной твердости и термостойкости обработанной поверхности. 4 пр.

Формула изобретения RU 2 715 273 C1

Состав для поверхностного лазерного упрочнения деталей из конструкционных сталей, отличающийся тем, что он содержит термореактивную отверждающуюся и коксующуюся смесь эпоксидированного новолака (А), триэтаноламинотитаната (Б) и нефтяного пека (В) в соотношении А:Б:В от 70:10:20 до 50:40:10.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715273C1

СОСТАВ ДЛЯ ПОВЕРХНОСТНОГО ЛАЗЕРНОГО УПРОЧНЕНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2007
  • Говоров Игорь Витальевич
  • Семенцев Александр Михайлович
  • Чемодуров Андрей Николаевич
RU2345174C1
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТЕЙ ТРЕНИЯ 2000
  • Тескер Е.И.
  • Гурьев В.А.
  • Марьев Д.В.
  • Елистратов В.С.
  • Казак Ф.В.
  • Дуросов В.М.
  • Тескер С.Е.
RU2161211C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОЙ ПОВЕРХНОСТИ МЕТАЛЛОВ И ИХ СПЛАВОВ (ВАРИАНТЫ) 2010
  • Тюфтин Анатолий Аркадьевич
  • Чирков Анатолий Михайлович
  • Корякин Даниил Владимирович
  • Щукин Владимир Дмитриевич
RU2445378C2
JP 2913032 B2, 28.06.1999
US 4698237 A, 06.10.1987.

RU 2 715 273 C1

Авторы

Колесников Владимир Иванович

Лапицкий Валентин Александрович

Сычев Александр Павлович

Колесников Игорь Владимирович

Сычев Алексей Александрович

Даты

2020-02-26Публикация

2019-04-02Подача