Изобретение относится к области создания высокопрочных жаростойких (2000÷2500°С) покрытий с антифрикционными свойствами на металлических (стальных) поверхностях подшипников, пресс-форм, штампов и других изделий, подвергаемых высоким сжимающим и сдвиговым нагрузкам.
Известен способ нанесения покрытий из сплавов системы Co-Cr-B-Si путем напыления составов газоплазменным методом с последующим оплавлением поверхности (Heganas, Metal Spray Powders, Sweden, HMSP, 1980, 51 p.). К недостаткам способа относится высокая остаточная пористость и недостаточная устойчивость покрытия к отслоению.
Известен также способ плазменного нанесения покрытий, включающий ввод в плазменную струю шихты на основе самофлюсующегося сплава и тугоплавкого соединения титана, являющийся ближайшим прототипом (см. RU 2 112 075 С1 от 27.05.1998). Этот способ позволяет получать покрытия с низкой пористостью (3÷4%) и хорошей износостойкостью (4,8). Недостатками указанного способа являются необходимость трудоемких операций приготовления дорогостоящих компонентов самофлюсующегося сплава Co-Cr-B-Si и диборида титана, а также недостаточная равномерность и гомогенность покрытия, невысокая прочность сцепления покрытия с металлом.
Целью настоящего изобретения является способ формирования высокопрочных и жаростойких покрытий с антифрикционными свойствами, каким является нитрид бора, обладающий устойчивостью к воздействию температур до 2500÷3000°С и высокой поверхностной твердостью, приближающейся к твердости алмаза. Способ основывается на использовании серийно выпускаемых компонентов несопоставимо более дешевых и доступных, чем упоминаемых в прототипе.
Поставленная цель достигается тем, что на поверхность металла, подвергнутую дробеструйной обработке, наносят состав, включающий химически связанные в одном продукте атомы бора и азота, которые при газоплазменном воздействии при температуре 1000÷1200°С высвобождаются из деструктируемого продукта и вступают в реакцию по схеме
B2O3+3С+2N→2BN+CO2.
Реакция необратима, поскольку образующийся нитрид бора устойчив до температур порядка 2500°С, а исходный продукт деструктирует при 400÷500°С, образуя предельно активные атомы азота и бора, особенно активные и подвижные при температуре 1000÷1200°С, и одновременно образует активный атомарный углерод, который является катализатором реакции присоединения атомов бора и азота. Давление газоплазменной струи способствует проникновению и накоплению на размягченной металлической (стальной) поверхности образующихся молекул нитрида бора.
Химические соединения, содержащие одновременно бор и азот, неоднократно публиковались в авторских свидетельствах СССР (авторы Лапицкий В.А. и др.), например, 1663072, 2177967 (RU патент), которые были использованы в серийном производстве материалов.
Получение состава, содержащего атомы бора и азота, осуществляли путем растворения борного ангидрида в этилцеллозольве совместно с дициандиамидом. Полученный продукт является эффективным отвердителем эпоксидных смол, обеспечивающим повышение теплостойкости отвержденных полимеров.
Для заявляемого способа указанный продукт использовали в сочетании с триглицидилизоциануратом с преобладанием атомов азота (промышленный продукт-эпоксидная смола марки ЭЦ). Полученный жидкий состав, стабильный при хранении не менее 12 месяцев, наносили на поверхность металла кистью или краскопультом.
Покрытие после воздействия температуры 150÷200°С превращается в твердый прочный материал в течение 1÷2 мин, медленно деструктирующий при температуре 400÷500°С и быстро - при температуре 900÷1000°С, образуя реакционную смесь, состоящую из атомов бора, азота и углерода.
Пример 1.
Приготовление композиции для нанесения покрытий осуществляют в реакторе с мешалкой и обогревом. В реактор загружают растворитель - этилцеллозольв (малотоксичный) (А), затем загружают порошкообразный борный ангидрид (Б) и дициандиамид (В) (серийно выпускаемые продукты). После растворения борного ангидрида и дициандиамида образуется комплексное соединение-отвердитель латентного действия для эпоксидных смол. Соотношение компонентов А:Б:В 60:20:20 (в масс. ч.).
К полученному раствору отвердителя добавляют 40 масс. ч. триглицидилизоцианурата (эпоксидная смола марки ЭЦ, серийно выпускаемый продукт, состоящий преимущественно из атомов азота и углерода (90%), а также кислорода и водорода (10%)).
Состав может храниться не менее 12 месяцев.
Полученный жидкий состав наносят слоем в 1 мм на металлическую поверхность, подвергнутую дробеструйной обработке, и подвергают сушке при 120°С для удаления растворителя и одновременного отверждения в течение 30 мин.
Образуется твердое прочное полимерное покрытие, которое сразу или после любого по длительности перерыва подвергается воздействию плазмотрона с использованием смеси природного газа и воздуха при температуре ~1100°С в течение 10 минут, затем постепенно охлаждают до нормальной температуры. Толщина готового покрытия составляет 200 мкм. Поверхностная микротвердость - 1900 кг/мм2. Температура плавления - свыше 2500°С.
Пример2.
Осуществляют аналогично примеру 1, но толщину наносимого слоя доводят до 2 мм. Образованное покрытие подвергается воздействию плазмотрона с использованием смеси природного газа и воздуха при температуре ~1100°С в течение 5 мин (сразу или после любого по длительности перерыва). Толщина готового покрытия составляет 200 мкм. Поверхностная микротвердость - 1800 кг/мм2. Температура плавления - свыше 2500°С.
Пример 3.
Осуществляют аналогично примеру 1, но соотношение компонентов А: Б:В=70:15:15 (в масс. ч.), а эпоксидной смолы марки ЭЦ добавляют 60 масс. ч. на 100 масс. ч. А+Б+В. Слой покрытия наносят толщиной в 3 мм. Образованное покрытие подвергается воздействию плазмотрона с использованием смеси природного газа и воздуха при температуре ~1100°С в течение 15 мин (сразу или после любого по длительности перерыва). Толщина готового покрытия составляет 600 мкм. Поверхностная микротвердость - 1900 кг/мм2. Температура плавления - свыше 2500°С.
Пример 4.
Осуществляют аналогично примеру 1, но соотношение компонентов А:Б:В применяют 50:25:25, а эпоксидной смолы марки ЭЦ добавляют 30 масс. ч. на 100 масс. ч. А+Б+В. Слой покрытия наносят толщиной в 0,8 мм. Образованное покрытие подвергается воздействию плазмотрона с использованием смеси природного газа и воздуха при температуре ~1100°С в течение 5 мин (сразу или после любого по длительности перерыва). Толщина готового покрытия составляет 150 мкм. Поверхностная микротвердость - 1800 кг/мм2. Температура плавления -свыше 2500°С.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЛАЗЕРНОЙ НАПЛАВКИ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ | 2020 |
|
RU2735481C1 |
Препрег для шликерных покрытий, наносимых методом лазерной наплавки | 2020 |
|
RU2737104C1 |
СОСТАВ ДЛЯ ПОВЕРХНОСТНОГО ЛАЗЕРНОГО УПРОЧНЕНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ | 2019 |
|
RU2715273C1 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНОГО КОЛЕСА ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА | 2015 |
|
RU2592651C1 |
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНОЙ ПОВЕРХНОСТИ | 2015 |
|
RU2585151C1 |
Порошковая композиция для получения высокопрочных и термостойких пенопластов | 2020 |
|
RU2748438C1 |
Способ получения высокопрочных, термо- и огнестойких сферопластиков | 2021 |
|
RU2768641C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ АНТИФРИКЦИОННЫХ ПОКРЫТИЙ | 2014 |
|
RU2582695C1 |
Полимерная композиция для получения высокопрочных, термо- и огнестойких сферопластиков | 2021 |
|
RU2764442C1 |
СПОСОБ НАНЕСЕНИЯ ТВЕРДЫХ АНТИФРИКЦИОННЫХ ПОКРЫТИЙ | 2008 |
|
RU2402599C2 |
Изобретение относится к области создания высокопрочных жаростойких покрытий с антифрикционными свойствами на металлических (стальных) поверхностях подшипников, пресс-форм, штампов и других изделий, подвергаемых высоким сжимающим и сдвиговым нагрузкам. Способ формирования высокопрочного жаростойкого покрытия на металлической поверхности включает предварительную дробеструйную обработку поверхности, нанесение слоя покрытия и воздействие на него плазмотроном. Осуществляют подготовку бор- и азотсодержащего состава покрытия путем растворения борного ангидрида в этилцеллозольве совместно с дициандиамидом в сочетании с триглицидилизоциануратом с преобладанием атомов азота. После нанесения полученного состава покрытие сушат, а затем воздействуют на него плазмотроном с использованием смеси природного газа и воздуха при температуре 1000÷800°С и охлаждают. Техническим результатом изобретения является формирование высокопрочных и жаростойких покрытий с антифрикционными свойствами, каким является нитрид бора, обладающий устойчивостью к воздействию температур до 2500÷3000°С и высокой поверхностной твердостью, приближающейся к твердости алмаза. 1 з.п. ф-лы, 4 пр.
1. Способ формирования высокопрочного жаростойкого покрытия на металлической поверхности, включающий предварительную дробеструйную обработку поверхности, нанесение слоя покрытия и воздействие на него плазмотроном, отличающийся тем, что осуществляют подготовку бор- и азотсодержащего состава покрытия путем растворения борного ангидрида в этилцеллозольве совместно с дициандиамидом в сочетании с триглицидилизоциануратом с преобладанием атомов азота, после нанесения полученного состава покрытие сушат, а затем воздействуют на него плазмотроном с использованием смеси природного газа и воздуха при температуре 1000÷800°С и охлаждают.
2. Способ по п.1, отличающийся тем, что в качестве бор- и азотсодержащего состава используют этилцеллозольв (А), порошкообразный борный ангидрид (Б) и дициандиамид (В) в соотношении А:Б:В от 70:15:15 до 50:25:25 с триглицидилизоциануратом в виде эпоксидной смолы промышленной марки ЭЦ в количестве 30÷60 масс. ч. на 100 масс. ч. продукта А+Б+В.
СПОСОБ НАНЕСЕНИЯ ПЛАЗМЕННОГО ПОКРЫТИЯ | 1996 |
|
RU2112075C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ФРИКЦИОННОГО ПРЕСС-МАТЕРИАЛА | 1999 |
|
RU2177967C2 |
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБОМАШИН | 2010 |
|
RU2441102C2 |
СПОСОБ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ЛОПАТКАХ ГАЗОВЫХ ТУРБИН | 2010 |
|
RU2441100C2 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И МЕТАЛЛИЧЕСКОЕ ИЗДЕЛИЕ, СНАБЖЕННОЕ ПОКРЫТИЕМ | 2007 |
|
RU2467092C2 |
JP 3260054 A, 20.11.1991 | |||
US 5683825 A1, 04.11.1997. |
Авторы
Даты
2020-03-17—Публикация
2019-02-08—Подача