СОСТАВ КОМПАУНДА ДЛЯ АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ Российский патент 2020 года по МПК C23C8/26 C23C26/00 

Описание патента на изобретение RU2737796C1

Изобретение относится к области получения материалов, в частности, к составу термореактивного эпоксидного компаунда для нанесения покрытия на деталь при осуществления химико-термической обработки легированных сталей, работающих в условиях повышенного износа, где необходима высокая поверхностная твердость деталей.

Известен способ азотирования (А.С. №945245 заявл. 17.09.1980 г., опубл. 23.07.1982 г. бюл. №27) где перед нагревом на детали наносят покрытие толщиной 3-30 мкм В качестве покрытий используют сажу, хром, медь или алюминий.

Недостатками указанного способа являются неравномерное и невысокое упрочнение поверхности, а также низкая производительность труда. Покрытия наносят способом гальванотехники или вакуумного напыления. Способ сводится к обработке деталей в камере аммиаком в течение длительного времени (иногда более суток), что малоэффективно, т.к. упрочнение стальных поверхностей азотом происходит за счет образования нитридов при воздействии только атомарного азота, который выделяется при диссоциации аммиака в незначительных количествах и накапливается в течение длительного времени.

Известен состав порошковой шихты для шликерных покрытий, содержащий кремний, борид циркония с приготовлением шликера на органическом связующем (патент RU №2471751 от 10.01.2013 г.). Однако данный состав также не позволяет использовать его при азотировании путем нанесения шликерных покрытий.

Известен способ азотирования деталей из конструкционных легированных сталей, включающий нагрев в печи детали до температуры 540-650°С, изотермическую выдержку при температуре нагрева. Предварительно на поверхность детали наносят наноразмерную медную пленку толщиной 150-200 нм., чем обеспечивается увеличение до заданного значения толщины монолитной зоны металлокерамик в диффузионном азотированном слое, получаемом на поверхности деталей из конструкционных легированных сталей без увеличения длительности процесса азотирования и без снижения его твердости (см. патент РФ №2614292, МПК С23С 28/04, опубл. 2017 г.).

Недостатками данного способа являются сложность нанесения гальваническим способом наноразмерной медной пленки (менее 500 нм) на детали из нержавеющих сталей (высоколегированных), применение токсичного аммиака, низкая производительность труда.

Наиболее близким к заявляемому способу по технической сущности является принятый в качестве прототипа (см. патент РФ №2692006, МПК С23С 8/26, опубл. 2019 г.). способ циклического газового азотирования деталей из высоколегированных сталей включает, нагрев в печи до температуры 540-650°С, изотермическую выдержку при температуре нагрева и последующее охлаждение вместе с печью в атмосфере аммиака. Предварительно на поверхность деталей методом окунания наносят шликерное покрытие, состоящее из порошка оксида хрома Cr2O3 и связующего - раствора целлулоида в смеси ацетона и уксусной кислоты.

Недостатками указанного способа являются применение токсичного аммиака, низкая производительность труда.

Целью заявляемого изобретения является разработка состава термореактивного эпоксидного компаунда для безопасного и эффективного процесса азотирования изделий из легированных сталей, работающих в условиях повышенного износа, где необходима высокая поверхностная твердость изделий, путем создания поверхностного слоя, содержащего нитриды металлов с использованием стандартного заводского оборудования и серийно выпускаемых промышленных материалов - алюминиевой пудры, азотосодержащих эпоксидных смол и отвердителей.

Поставленная цель достигается тем, что состав термореактивного эпоксидного компаунда состоит из азотосодержащей эпоксидной смолы (А), аминного или амидного или амино-амидного отвердителя (Б) и наполнителя - алюминиевой пудры (В) - в соотношении (мас. ч.) А : Б от 100:5 до 100:80 и (А+Б) : В от 100:80 до 100:400.

Предлагаемый состав обладает сильной адгезией к сталям и наносится на обезжиренную стальную деталь кистью и/или одно-, двухсопловым краскопультом. В зависимости от вида эпоксидной смолы и отвердителя нанесенный состав отверждается в сушильном шкафу (при температуре от 30°С до 160°С) за короткий промежуток времени (от 3 до 180 минут), превращаясь в твердое высокопрочное покрытие. После чего стальная деталь с отвержденным покрытием подвергается термообработке при температуре от 500°С до 1000°С в течение от 20 до 80 минут), в результате чего покрытие быстро деструктурирует, образуя в среде расплава алюминия атомарный азот с примесью атомарного углерода, который является катализатором образования нитридов металлов. В результате этого процесса образуется нитрид алюминия при температуре 600÷800°C (без катализатора - при температуре 1000°С) имеющий величину микротвердости 12 ГПа и температуру плавления 2000°С, уступая по этим параметрам нитридам других металлов, но значительно превосходя легированные стали. Затем охлажденную деталь обрабатывают раствором соляной кислоты для удаления непрореагировавшего алюминия.

Пример 1

В реактор с быстроходной мешалкой загружают жидкую эпоксианилиновую смолу (А) марки ЭА (ТУ 2225-606-11131395-2003), содержащую 34% эпоксидных групп, в количестве 100 мас. ч., а затем добавляют 40 мас. ч. отвердителя (Б) - пара-аминобензиламина (опытно-промышленный продукт) и 240 мас. ч. алюминиевой пудры (В). Смесь перемешивают при 30°С в течение 5 мин, а затем полученный компаунд выгружают в промежуточную емкость, из которой кистью или краскопультом наносят на стальную деталь, выдерживают ее при температуре окружающей среды в течение 60 мин до нарастания вязкости и термообрабатывают при 90°С в течение 90 мин. Получаемое покрытие устойчиво к случайным ударам (удельная ударная вязкость не менее 25 кДж/м2, прочность при сжатии 200 МПа). Далее деталь с покрытием помещают в тигельную печь и термообрабатывают при 750°С в течение 30 мин. В это время происходит полная деструкция эпоксидного компаунда с выделением атомарного углерода и азота, который активно поглощается расплавленным алюминием с образованием на поверхности стальной детали нитрида алюминия. Одновременно на поверхности происходят побочные реакции образования нитридов и карбидов легирующих металлов за счет реакции последних с активными атомарными азотом и углеродом, которые также способствуют повышению поверхностной твердости стального изделия. Охлажденную деталь обрабатывают 20%-й соляной кислотой для удаления следов непрореагировавшего алюминия.

Примеры 2÷5 осуществляют аналогично примеру 1 с изменением отдельных параметров.

Пример 2

Осуществляют аналогично примеру 1, но в качестве аминосодержащей эпоксидной смолы (А) применяют смолу УП-610 (триглицидилпарааминофенол, ТУ 2225-606-11131395-2003) с жидкой эвтектической смесью МФДА (мета-фенилендиамин, ГОСТ 5826-78) с 4,4'-ДАДФМ (4,4'-диаминодифенилметан, CAS 101-77-9) (Б) в соотношении А : Б = 100:80.

Пример 3

Осуществляют аналогично примеру 1, но в качестве эпоксидной смолы используют триглицидилизоцианурат марки ЭЦН (ТУ 6-05-1190-76), а в качестве отвердителя - 2-метилимидазол (CAS 693-98-1) в соотношении А : Б = 100:5 при соотношении (А+Б) : В (алюминиевая пудра) = 100:160.

Пример 4

Осуществляют аналогично примеру 1 с использованием смолы ЭА, но в качестве отвердителя применяют аминоалкилимидазол марки И-5-М (ТУ 6-21-11-03-113-93) в соотношении А : Б = 100:80, (А+Б) : В = 100:400 и температуру термообработки 500°С в течение 60 мин.

Пример 5

Осуществляют аналогично примеру 1, но в качестве азотосодержащей эпоксидной смолы применяют тетраглицидил 3,3'-дихлор-4,4'-диаминодифенилметан марки ЭХД (ТУ 2225-512-00203521-98) (А) и отвердитель И-5-М (ТУ 6-21-11-03-113-93) (Б) в соотношении А : Б = 100:80, отверждают при 36°С в течение 80 мин, а термообрабатывают при 1000°С в течение 20 мин.

Похожие патенты RU2737796C1

название год авторы номер документа
СПОСОБ АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ 2020
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
RU2736289C1
Способ получения высокопрочных, термо- и огнестойких сферопластиков 2021
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
  • Колесников Игорь Владимирович
  • Яковлев Виктор Борисович
  • Бардушкин Андрей Владимирович
RU2768641C1
Полимерная композиция для получения высокопрочных, термо- и огнестойких сферопластиков 2021
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
  • Колесников Владимир Иванович
  • Лавров Игорь Викторович
  • Бардушкин Андрей Владимирович
RU2764442C1
Способ получения антифрикционных микрокапсул 2017
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Колесников Игорь Владимирович
  • Мясников Филипп Васильевич
RU2673536C1
СПОСОБ ФОРМИРОВАНИЯ ВЫСОКОПРОЧНЫХ АНТИФРИКЦИОННЫХ ПОКРЫТИЙ НА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЯХ 2010
  • Колесников Владимир Иванович
  • Лапицкий Александр Валентинович
  • Лапицкий Валентин Александрович
  • Колесников Игорь Владимирович
  • Сычев Алексей Александрович
RU2463386C2
Препрег для шликерных покрытий, наносимых методом лазерной наплавки 2020
  • Сычев Александр Павлович
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Бардушкин Владимир Валентинович
  • Сычева Марина Александровна
  • Колесников Игорь Владимирович
  • Лавров Игорь Викторович
RU2737104C1
СПОСОБ НАНЕСЕНИЯ ТВЕРДЫХ АНТИФРИКЦИОННЫХ ПОКРЫТИЙ 2008
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Лапицкий Александр Валентинович
  • Колесников Игорь Владимирович
RU2402599C2
СПОСОБ ПОЛУЧЕНИЯ ЭПОКСИДНОГО ПРЕСС-МАТЕРИАЛА 2006
  • Лапицкий Валентин Александрович
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Лапицкий Александр Валентинович
  • Флек Борис Михайлович
RU2307851C1
СПОСОБ ПОЛУЧЕНИЯ АНТИФРИКЦИОННЫХ МЕТАЛЛОПОЛИМЕРНЫХ ИЗДЕЛИЙ 2000
  • Колесников В.И.
  • Богатырев А.С.
  • Лапицкий В.А.
  • Сычев А.П.
  • Колесников И.В.
RU2178103C1
Способ формирования высокопрочных покрытий на металлических поверхностях 2019
  • Колесников Владимир Иванович
  • Лапицкий Валентин Александрович
  • Сычев Александр Павлович
  • Бардушкин Владимир Валентинович
  • Сычев Алексей Александрович
RU2716921C1

Реферат патента 2020 года СОСТАВ КОМПАУНДА ДЛЯ АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ

Изобретение относится к составу термореактивной эпоксидной смеси для азотирования деталей из легированных сталей при осуществлении химико-термической обработки. Указанный состав термореактивной эпоксидной смеси представляет собой компаунд, состоящий из азотосодержащей эпоксидной смолы (А), аминного, или амидного, или амино-амидного отвердителя (Б) и наполнителя в виде алюминиевой пудры (В), в соотношении, мас.ч. А : Б от 100:5 до 100:80 и (А+Б) : В от 100:80 до 100:400. Обеспечиваются повышенный износ и высокая поверхностная твердость деталей из легированных сталей. 5 пр.

Формула изобретения RU 2 737 796 C1

Состав термореактивной эпоксидной смеси для азотирования деталей из легированных сталей, отличающийся тем, что он представляет собой компаунд, состоящий из азотосодержащей эпоксидной смолы (А), аминного, или амидного, или амино-амидного отвердителя (Б) и наполнителя в виде алюминиевой пудры (В), в соотношении, мас.ч. А : Б от 100:5 до 100:80 и (А+Б) : В от 100:80 до 100:400.

Документы, цитированные в отчете о поиске Патент 2020 года RU2737796C1

СПОСОБ ЦИКЛИЧЕСКОГО ГАЗОВОГО АЗОТИРОВАНИЯ ДЕТАЛЕЙ ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ 2018
  • Александров Владимир Алексеевич
  • Петрова Лариса Георгиевна
  • Брежнев Андрей Александрович
  • Демин Пётр Евгеньевич
RU2692006C1
СПОСОБ АКТИВИРОВАНИЯ ИЗДЕЛИЯ ИЗ ПАССИВНОГО ЧЕРНОГО ИЛИ ЦВЕТНОГО МЕТАЛЛА ДО НАУГЛЕРОЖИВАНИЯ, АЗОТИРОВАНИЯ И/ИЛИ АЗОТОНАУГЛЕРОЖИВАНИЯ 2010
  • Кристиансен,Томас Лундин
  • Хуммельсхей,Томас Страбо
  • Сомерс,Марсел А.Й.
RU2536841C2
Способ легирования изделий из сплавов на железной основе 1977
  • Альберт Гровер Хартлайн Ш
SU897115A3
Расплав для азотирования 1987
  • Пальчевский Борис Николаевич
  • Довгялло Игорь Георгиевич
  • Вишневский Владислав Борисович
  • Бельский Сергей Ефграфович
SU1507861A1
JP 6608450 B2, 20.11.2019.

RU 2 737 796 C1

Авторы

Колесников Владимир Иванович

Лапицкий Валентин Александрович

Сычев Александр Павлович

Колесников Игорь Владимирович

Бардушкин Владимир Валентинович

Сычев Алексей Александрович

Даты

2020-12-03Публикация

2020-03-05Подача