Контрольно-проверочная аппаратура космического аппарата Российский патент 2020 года по МПК B64G5/00 G01R31/00 

Описание патента на изобретение RU2717293C1

Предлагаемое изобретение относится к области радиотехники, в частности, к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и предстартовых испытаниях КА.

Известна «Автоматизированная испытательная система для отработки, электрических проверок и подготовки к пуску космических аппаратов» (патент РФ №2245825, опубликованный 10.02.2005, бюлл. №4). Эта система содержит блок приведения системы в готовность к испытаниям КА, блоки управления, ввода и анализа корректности директив, передачи допусковых значений параметров, выбора трактов связи, проведения защитных операций, выдачи технологических команд управления, связи с системой бортовых телеизмерений, связи с бортовой вычислительной системой, измерения аналоговых параметров, ввода и запоминания состояния дискретных параметров, допускового контроля аналоговых и дискретных параметров, формирования команд общего назначения, формирования протокола испытаний, отображения, регистрации основного протокола испытаний, контроля корпуса, формирования сигнала наличия корпуса, контроля работоспособности аппаратуры с соответствующими связями между ними.

Недостаток известной автоматизированной испытательной системы заключается в неполном контроле работоспособности аппаратуры КА, поскольку не обеспечивается анализ важных составляющих (параметров), а именно приемно-передающих трактов полезной нагрузки КА - бортового ретрансляционного комплекса (БРК). Контроль параметров БРК является важным элементом при приемо-сдаточных и предстартовых испытаниях КА.

Наиболее близким к заявляемому устройству является Контрольно-проверочная аппаратура (КПА), реализующая способ электрических проверок космического аппарата (патент РФ №2563925, опубликованный 27.09.2015, бюлл. №27). Известная КПА КА содержит персональный компьютер, блоки контроля сопротивления изоляции бортовых шин питания КА и измерения электрического сопротивления между шинами питания космического аппарата, блоки связи контрольно-проверочной аппаратуры КА с системой бортовых телеизмерений КА и связи КПА КА с командной матрицей системы управления бортовой аппаратурой КА, блок связи КПА с бортовой вычислительной системой КА, измерители мощности принимаемого радиосигнала и частоты принимаемого радиосигнала, анализатор спектра принимаемого радиосигнала, приемник и приемную антенну КПА КА, адресный коммутатор цифровых потоков, управляемые аттенюатор и аттенюатор-делитель, передатчик и передающую антенну КПА КА. Приемная антенна КПА КА соединена с управляемым аттенюатором-делителем, который соответствующими выходами подключен к аналоговым входам измерителя мощности принимаемого радиосигнала, измерителя частоты принимаемого радиосигнала, анализатора спектра принимаемого радиосигнала и приемника КПА КА. Передатчик КПА КА соответствующим выходом соединен с входом управляемого аттенюатора, выход которого подключен к передающей антенне КПА КА. Многоразрядные двунаправленные входы/выходы персонального компьютера, измерителя мощности принимаемого радиосигнала, измерителя частоты принимаемого радиосигнала, анализатора спектра принимаемого радиосигнала, блока контроля сопротивления изоляции бортовых шин питания космического аппарата, блока измерения сопротивления между бортовыми шинами питания, управляемых аттенюатора и аттенюатора-делителя (далее аттенюаторы), приемника КПА КА, передатчика КПА КА, блока связи КПА КА с командной матрицей системы управления бортовой аппаратурой КА, блока связи КПА КА с системой бортовых телеизмерений КА и блока связи КПА КА с бортовой вычислительной системой КА - соединены с соответствующими двунаправленными цифровыми входами/выходами адресного коммутатора цифровых потоков.

Недостатком известной КПА следует отметить невозможность автоматизированного контроля параметров бортового ретрансляционного комплекса, который предназначен для непосредственного выполнения миссии КА - приема и передачи радиосигналов по направлениям Земля - КА и обратно. В настоящее время известная контрольно-проверочная аппаратура предусматривает автоматизированный контроль только параметров командно-измерительной системы (КИС), а параметры БРК контролируются не автоматизированными методами.

Задачей предлагаемого технического решения является обеспечение автоматизированного контроля параметров бортового ретрансляционного комплекса на этапах проектирования, производства на заводе-изготовителе, цеховых, приемо-сдаточных и предстартовых испытаний наряду с контролем и параметров КИС. Реализация этого решения позволит упростить и сократить сроки автоматизированного контроля.

Поставленная задача решается тем, что контрольно-проверочная аппаратура космического аппарата, содержащая адресный коммутатор цифровых потоков, соединенный соответствующими двунаправленными многоразрядными шинами с персональным компьютером оператора, с приемником, с первым и вторым аттенюаторами, с передатчиком, с блоком связи КПА с системой телеизмерений КА, с блоком связи КПА с командной матрицей системы управления бортовой аппаратурой КА, с измерителем сопротивления и с блоком контроля сопротивления изоляции бортовых шин питания КА, приемную антенну, соединенную последовательно со вторым входом первого аттенюатора и с приемником, и передающую антенну, соединенную с выходом второго аттенюатора, который вторым входом подключен к передатчику, согласно изобретению, дополнительно содержит векторный анализатор, векторный генератор, цифровой сигнальный процессор, соединенные соответствующими двунаправленными многоразрядными шинами с адресным коммутатором цифровых потоков, и рубидиевый стандарт частоты, соединенный соответственно с цифровым сигнальным процессором, вторым входом векторного анализатора и вторым входом векторного генератора, при этом векторный анализатор третьим входом подключен к приемнику, а векторный генератор выходом соединен с передатчиком.

На фиг. 1 приведена структурная схема заявляемой контрольно-проверочной аппаратуры космического аппарата, обеспечивающей проверку параметров и контроль функционирования БРК КА.

Контрольно-проверочная аппаратура содержит персональный компьютер 1, подключенный с помощью многоразрядной двунаправленной шины к адресному коммутатору 2 цифровых потоков. К адресному коммутатору 2 цифровых потоков также с помощью многоразрядных двунаправленных шин подключены векторный анализатор 3, приемник 4, первый 51 и второй 52 аттенюаторы, цифровой сигнальный процессор 6, векторный генератор 7, передатчик 8, блок 9 связи КПА с системой телеизмерений КА, блок 10 связи КПА с командной матрицей системы управления бортовой аппаратурой КА, измеритель 11 сопротивления и блок 12 контроля сопротивления изоляции бортовых шин питания КА. Заявляемая КПА также содержит приемную 13 и передающую 14 антенны и рубидиевый стандарт частоты 15. Приемная антенна 13 последовательно соединена с первым аттенюатором 51, приемником 4 и векторным анализатором 3, а рубидиевый стандарт частоты 15 подключен к соответствующим входам векторного анализатора 3, цифрового сигнального процессора 6 и векторного генератора 7. При этом своим выходом векторный генератор 7 подключен к передатчику 8, чей выход соединен с соответствующим входом второго аттенюатора 52, который своим выходом соединен с передающей антенной 14.

Структура КА 17 приведена на фиг. 1 исключительно с целью наглядного представления функций заявляемой КПА. Шины 18 питания КА соединены с соответствующими входами измерителя 11 сопротивления и блока 12 контроля сопротивления изоляции бортовых шин питания. Командная матрица 19 системы управления бортовой аппаратурой КА 17 соединена с выходом блока 10 связи КПА и с одним из входов бортового ретрансляционного комплекса 20, который с помощью цифровой двунаправленной шины подключен к системе 21 телеизмерений КА, другим входом соединен с приемником 22 КА, а выходом - с передатчиком 23 КА. Вход приемника 22 КА соединен с приемной антенной 24 КА, а выход передатчика 23 КА соединен с передающей антенной 25 КА, при этом радиосигнал с передающей антенны 25 КА поступает по беспроводному радиоканалу на приемную антенну 13 КПА (на фиг. 1 показано пунктиром). Аналогично, сигнал с передающей антенны 14 КПА поступает по беспроводному радиоканалу на приемную антенну 24 КА (также показано пунктиром).

Предлагаемая контрольно-проверочная аппаратура космического аппарата работает следующим образом. Персональный компьютер 1 устанавливается на рабочем месте оператора. С помощью персонального компьютера 1 оператор имеет возможность ручного формирования директив. Кроме того, на персональный компьютер 1 возложены функции автоматического формирования директив, отображения информации, формирования протоколов испытаний, а также хранения процедур, циклограмм и команд проверки параметров бортового ретрансляционного комплекса (БРК) 20 КА. Обработка информации с выхода векторного анализатора 3 с целью определения оцениваемых параметров БРК производится в цифровом сигнальном процессоре 6, поскольку ресурсы персонального компьютера 1 по быстродействию и объему обрабатываемой информации не позволяют достичь необходимых результатов. Адресный коммутатор 2 обеспечивает переключение цифровых потоков команд и/или результатов измерения от КПА к получателю. Каждое сообщение в пакетном режиме (команда) сопровождается адресом получателя, который распознается адресным коммутатором 2 цифровых потоков, и команда перенаправляется к получателю. При выполнении сложных сообщений, которые требуют последовательного выполнения нескольких функций, в персональном компьютере 1 автоматически формируется последовательность команд с распределением по времени в соответствии с выбранной циклограммой (из памяти персонального компьютера 1). Кроме того, персональный компьютер 1 обеспечивает автоматическое выполнение функциональных директив по заранее заложенному в память персонального компьютера 1 расписанию, например, проведение измерений одного или нескольких параметров по соответствующему графику по времени.

Измерение параметров принимаемых сигналов производится на основе спектральных оценок, формируемых векторным анализатором 3. Результаты обработки этих оценок, выполняемой цифровым сигнальным процессором 6, отображаются на экране монитора и сохраняются в памяти персонального компьютера 1 с целью дальнейшего использования.

Команды управления бортового ретрансляционного комплекса 20 поступают на борт КА через блок связи 10 КПА с командной матрицей 19 системы управления бортовой аппаратурой КА. Система бортовых телеизмерений КА 21 взаимодействует с КПА через блок связи 9. Команды управления режимами работы БРК 20 поступают на БРК 20 с командной матрицы 19 КА 17. Исполнение команд контролируется системой 21 телеизмерений и передаются на персональный компьютер оператора 1 через блок 9 связи с системой телеизмерений и адресный коммутатор 2.

Рубидиевый стандарт частоты 15 обеспечивает синхронизацию работы векторного анализатора 3, цифрового сигнального процессора 6 и векторного генератора 7.

Для проверки исправности и измерения характеристик передающего и приемного трактов БРК 20 КА необходимо контролировать, по меньшей мере, следующие параметры:

- выходную мощность бортового передатчика;

- спектр выходного сигнала бортового передатчика;

- параметры модуляции бортового передатчика;

- номинал и стабильность несущей частоты бортового передатчика;

- измерение относительного и абсолютного значений группового времени запаздывания и отношения сигнал/шум;

- амплитудно-фазочастотные характеристики трактов;

- демодуляцию сложных сигналов DVB-S2, CDMA+DVB-S2, OFDM+PVB-S2;

- правильность передаваемой БРК телеметрии;

- чувствительность бортового приемника;

- пороги захвата сигнала приемником КА по частоте и по амплитуде;

- правильность расшифровки и исполнения команд, передаваемых с персонального компьютера оператора 1 на БРК 20.

Сигнал с векторного генератора 7 через второй аттенюатор 52 поступает на передающую антенну 14 КПА и далее по радиоканалу на приемную антенну 24 КА. Изменение мощности излучаемого передающей антенной 14 КПА радиосигнала с помощью второго аттенюатора 52 используется в процессе испытаний работы приемника 22 и всего БРК 20 КА. При этом определяется его чувствительность и пороговые значения частоты и амплитуды радиосигнала, при которых обеспечивается безошибочный его прием. Первый 51 и второй 52 аттенюаторы обеспечивают ослабление сигналов, принимаемых антенной 13 и излучаемых передающей антенной 14 с целью проверки работоспособности БРК 20 при имитации различных дальностей КА от поверхности Земли. Правильность приема и обработки команд системами КА всесторонне определяется путем передачи команд на борт КА с блока 10, а затем выполнения проверки их исполнения путем анализа данных, приходящих с блока связи 9 и с приемника 4 КПА.

Таким образом, предлагаемая контрольно-проверочная аппаратура космического аппарата способна обеспечить функцию проверки работоспособности и оценки параметров передающего и приемного трактов полезной нагрузки, а именно бортового ретрансляционного комплекса телекоммуникационных КА.

На современном уровне техники КПА может быть реализована на основе серийно выпускаемых измерительных приборов и узлов. Так, в качестве адресного коммутатора 2 цифровых потоков может быть использован, например, Ethernet (Cisco Catalyst 3750-24TS) или PXIe (National Instruments PXIe-1085), в зависимости от цифровых шин, которые имеются у подключаемых к нему устройств, входящих в состав КПА. В качестве первого 51 и второго 52 аттенюаторов могут быть использованы серийные аттенюаторы Agilent N5183A-1E1 или им подобные. Приемник 4 КПА аналогичен промышленно выпускаемым приемникам в наземных станциях спутниковой связи, соответствующим проверяемому КА по частотному диапазону и типам модуляции. В качестве векторного анализатора и векторного генератора могут быть использованы серийные приборы Keysight М9383А и, соответственно, Keysight N9030B. Цифровой сигнальный процессор 6 может выполнен на базе ПЛИС XILINX VIRTEX - 5.

Похожие патенты RU2717293C1

название год авторы номер документа
КОНТРОЛЬНО-ПРОВЕРОЧНАЯ АППАРАТУРА КОСМИЧЕСКОГО АППАРАТА 2014
  • Горчаковский Александр Антонович
  • Евстратько Владислав Владимирович
  • Мишуров Андрей Валериевич
  • Панько Сергей Петрович
  • Рябушкин Станислав Анатольевич
  • Сухотин Виталий Владимирович
  • Шатров Виталий Альбертович
  • Петренко Вадим Леонидович
RU2563925C1
Система проверки бортовых радиотехнических систем космических аппаратов 2022
  • Грачев Денис Владимирович
  • Давыдов Денис Евгеньевич
  • Мартынов Андрей Геннадьевич
  • Пилякин Константин Игоревич
  • Славянский Андрей Олегович
RU2799959C1
СПОСОБ РЕТРАНСЛЯЦИИ РАДИОСИГНАЛОВ С ГЕОСТАЦИОНАРНОЙ ОРБИТЫ 2019
  • Выгонский Юрий Григорьевич
  • Мочалов Дмитрий Александрович
  • Квашнин Александр Анатольевич
  • Проценко Евгений Борисович
  • Яковлев Александр Юрьевич
RU2714301C1
СПОСОБ ВЫСОКОЧАСТОТНЫХ ИСПЫТАНИЙ СПУТНИКОВЫХ РЕТРАНСЛЯТОРОВ Q/Ka - ДИАПАЗОНА 2019
  • Нестеренко Игорь Сергеевич
  • Квашнин Александр Анатольевич
  • Проценко Евгений Борисович
  • Смирнов Сергей Геннадьевич
  • Большаков Дмитрий Андреевич
RU2729915C1
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2013
  • Кейстович Александр Владимирович
RU2544007C2
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2010
  • Кейстович Александр Владимирович
  • Сауткин Виктор Евгеньевич
  • Комяков Алексей Владимирович
  • Богатов Юрий Михайлович
  • Кейстович Андрей Александрович
RU2427078C1
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2022
  • Кейстович Александр Владимирович
  • Фукина Наталья Анатольевна
RU2791262C1
СПОСОБ ГЛОБАЛЬНОЙ НИЗКООРБИТАЛЬНОЙ СПУТНИКОВОЙ СВЯЗИ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Безруков Анатолий Алексеевич
  • Выгонский Юрий Григорьевич
  • Голубев Евгений Аркадьевич
  • Екимов Евгений Парфенович
RU2570833C1
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2013
  • Кейстович Александр Владимирович
RU2535922C1
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2018
  • Кейстович Александр Владимирович
  • Измайлова Яна Алексеевна
RU2688199C1

Иллюстрации к изобретению RU 2 717 293 C1

Реферат патента 2020 года Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к области радиотехники, в частности к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и предстартовых испытаниях КА. Контрольно-проверочная аппаратура КА наряду с известным содержанием схемы включает векторный анализатор принимаемых сигналов, векторный генератор передаваемых сигналов, цифровой сигнальный процессор и рубидиевый стандарт частоты. Такое решение позволяет проводить комплексную проверку функционирования систем бортового ретрансляционного комплекса КА. При этом обеспечивается контроль работоспособности и измерение характеристик приемного и передающего трактов бортового ретрансляционного комплекса КА. 1 ил.

Формула изобретения RU 2 717 293 C1

Контрольно-проверочная аппаратура (КПА) космического аппарата (КА), содержащая адресный коммутатор цифровых потоков, соединенный соответствующими двунаправленными многоразрядными шинами с персональным компьютером оператора, с приемником, с первым и вторым аттенюаторами, с передатчиком, с блоком связи КПА с системой телеизмерений КА, с блоком связи КПА с командной матрицей системы управления бортовой аппаратурой КА, с измерителем сопротивления и с блоком контроля сопротивления изоляции бортовых шин питания КА, приемную антенну, соединенную последовательно со вторым входом первого аттенюатора и с приемником, и передающую антенну, соединенную с выходом второго аттенюатора, который вторым входом подключен к передатчику, отличающаяся тем, что она дополнительно содержит векторный анализатор, векторный генератор, цифровой сигнальный процессор, соединенные соответствующими двунаправленными многоразрядными шинами с адресным коммутатором цифровых потоков, и рубидиевый стандарт частоты, соединенный соответственно со вторым входом цифрового сигнального процессора, векторного анализатора и векторного генератора, при этом векторный анализатор третьим входом подключен к приемнику, а векторный генератор выходом соединен с передатчиком.

Документы, цитированные в отчете о поиске Патент 2020 года RU2717293C1

КОНТРОЛЬНО-ПРОВЕРОЧНАЯ АППАРАТУРА КОСМИЧЕСКОГО АППАРАТА 2014
  • Горчаковский Александр Антонович
  • Евстратько Владислав Владимирович
  • Мишуров Андрей Валериевич
  • Панько Сергей Петрович
  • Рябушкин Станислав Анатольевич
  • Сухотин Виталий Владимирович
  • Шатров Виталий Альбертович
  • Петренко Вадим Леонидович
RU2563925C1
АВТОМАТИЗИРОВАННАЯ ИСПЫТАТЕЛЬНАЯ СИСТЕМА ДЛЯ ОТРАБОТКИ, ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК И ПОДГОТОВКИ К ПУСКУ КОСМИЧЕСКИХ АППАРАТОВ 2003
  • Зеленщиков Н.И.
  • Четвериков Е.Н.
  • Термосесов А.М.
  • Наумкин В.П.
  • Кашицын М.П.
  • Масенко П.П.
  • Бугеря Б.М.
  • Банщиков Ю.А.
  • Сорокин П.А.
  • Михайлов А.А.
  • Шура-Бура М.Р.
  • Луцикович В.В.
  • Баранова Т.П.
  • Гончаров Ю.М.
  • Шляхтин С.А.
  • Москаленко А.Е.
  • Калинина Л.Н.
  • Максимов А.В.
  • Мотов А.А.
RU2245825C1
US 3535683 А1, 20.10.1970
Электролизер для получения хлора и щелочи 1975
  • Есиказу Кокубу
  • Исао Оказаки
  • Харуо Сикано
SU784800A3

RU 2 717 293 C1

Авторы

Панько Сергей Петрович

Сухотин Виталий Владимирович

Горчаковский Александр Антонович

Евстратько Владислав Владимирович

Мишуров Андрей Валериевич

Хныкин Антон Владимирович

Камышников Алексей Николаевич

Кузовников Александр Витальевич

Даты

2020-03-19Публикация

2018-12-17Подача