Способ предварительной осушки попутного нефтяного газа Российский патент 2020 года по МПК B01D53/26 

Описание патента на изобретение RU2718936C1

Предложение относится к нефтегазодобывающей промышленности, а именно к способам по осушке попутного нефтяного газа.

Известен способ подготовки углеводородного газа к транспорту (патент RU №2171132, МПК B01D 53/26, B01D 53/14, F17D 1/12, опубл. 27.07.2001 Бюл. № 21), включающий сепарацию, компримирование, охлаждение, абсорбционную осушку сырого газа, подачу и вывод насыщенного абсорбента на регенерацию, компримирование и охлаждение осушенного газа, при этом часть осушенного газа высокого давления направляют в эжектор в качестве активного потока и возвращают в технологический цикл, причем в эжекторном устройстве осуществляют предварительную осушку сырого газа путем подачи в эжектор насыщенного абсорбента с установки осушки, последующее его доулавливание и направление на установку регенерации абсорбента.

Недостатками данного устройства являются сложность процесса, так как охлаждение и осушка газа ведутся на разных стадиях в различных аппаратах, так же необходимо наличие абсорбента, на регенерацию которого необходимо дополнительные затраты.

Наиболее близким по технической сущности является способ газодинамической сепарации(патент RU №2606427, МПК F25J 3/08, B01D 53/26, B01D 50/00, B01D 45/12, опубл. 10.12.2016 Бюл. № 34), включающий подачу потока высоконапорного многокомпонентного углеводородного газа в сопло, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов в охлажденном потоке газа, отделение конденсата от газовой фазы и повышение его давления путем торможения в диффузоре, причем отделенный углеводородный конденсат при контакте с исходным газом частично испаряется и при этом дополнительно охлаждается, а исходный газ охлаждают при теплообмене с хладагентом - дополнительно охлажденным конденсатом.

Недостатками данного способа являются сложность при изготовлении, обслуживании и ремонте сопла и необходимость использования хладагента, добавляемого непосредственно в поток газа.

Технической задачей предполагаемого изобретения является создание способа предварительной осушки попутного нефтяного газа простого в использовании и не требующего дополнительных реагентов для реализации.

Техническая задача решается способом предварительной осушки попутного нефтяного газа, включающим подачу потока высоконапорного попутного газа в корпусе с соплом, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов при охлаждении, отделение конденсата от газовой фазы, повышение давления газа путем торможения, причем исходный газ также охлаждают при теплообмене с хладагентом.

Новым является то, что предварительно определяют компонентный состав попутного газа и температуру кипения наиболее низкотемпературных компонентов и/или воды, находящейся в попутном газе, которые являются хладагентом, определяют давление кипения низкотемпературных компонентов и/или воды при температуре поступающего газа, причем из основного потока газа выделяют и направляют в корпус через сопло часть потока газа, достаточную для обеспечения высоконапорного потока через сопло, в котором скорость потока обеспечивает поддержание давления для точки кипения низкотемпературных компонентов и/или воды в корпусе, вставленном камеру охлаждения, в которой происходит отделение конденсата от газовой фазы основного потока газа для отбора конденсата в основной конденсатосборник из нижней точки, а осушенного газа - в следующую ступень обработки, при этом обеспечивают встречные потоки газа в корпусе и камере охлаждения, на выходе которой производят повышение давления газа путем торможения в объемной камере, сообщенной с дополнительным конденсатосборником для сброса образовавшегося конденсата из объемной камеры и газа, проходящего через корпус, из дополнительного конденсатосборника конденсат периодически направляют в основной конденсатосборник, а газ - откачивают струйным насосом установленным перед камерой охлаждения после разделения потока, причем в камере охлаждения поддерживают температуру ниже температуры насыщения пара при делении перекачки, но выше температуры замерзания воды.

На чертеже изображена схема реализации способа.

Конструктивные элементы и технологические соединения, не влияющие на реализацию способа, на чертеже не показаны или показаны условно.

Способ предварительной осушки попутного нефтяного газа включает предварительно определяют компонентный состав попутного газа и температуру кипения наиболее низкотемпературных компонентов и/или воды, находящейся в попутном газе, которые являются хладагентом, определяют давление кипения низкотемпературных компонентов и/или воды при температуре поступающего газа (например, для n-бутана температура кипения +15°С при 0,15 МПа, для воды +60°С при 0,04 МПа и т.д.) Осуществляют подачу потока попутного газа нагнетательным насосом 1 в блок 2 предварительной осушки. В блоке 2 поток попутного газа разделяют при помощи регулируемого штуцера 3 (например, жиклер с тарированным отверстием, регулируемая задвижка или т.п.) на основной поток, направляемый в струйный насос 4, и дополнительный поток, направляемый на вход подпорного насоса 5 для обеспечения высоконапорного потока попутного газа в корпусе 6 с соплом 7, которые подбирают исходя из данных полученных при исследовании компонентного состава попутного газа. В результате происходит изоэнтальпийное расширение в сопле 7 и подержание в корпусе 6 скорости, обеспечивающей гидростатическое давление меньше давления точки кипения при температуре поступающего дополнительного потока газа для интенсивного кипения низкотемпературных компонентов (например, 0.09 МПа при + 25°С для n-бутана) и/или воды(например, 0,04°МПа при + 65°С), находящейся в попутном газе. Кипящие интенсивного кипения низкотемпературных компоненты и/или вода играют роль хладагента. Все это в совокупности обеспечивает резкое снижение температуры в корпусе 6 (особенно на выходе из сопла 7), которая передается через его стенки основному потоку попутного газа, прокачиваемому в камере охлаждения 8. Скорость основного потока попутного газа в камере охлаждения 8 поддерживают для поддержания на выходе температуры (на практике + 10°С - + 20°С) ниже температуры насыщения пара при делении перекачки (на практике: 0,4 - 10 МПа), но выше температуры замерзания воды. В результате пар из газа интенсивно конденсируется в камере охлаждения 8 и на поверхности корпуса 6 без образования «снежной шубы» (иней на поверхности теплообменника - корпуса 6, изолирующий теплообмен и ухудшающий работу блока 2) и стекает на дно камеры 8. Из низшей точки камеры охлаждения 8 конденсат периодически (например, при помощи регулируемой задвижки 9) отводится в основной конденсатосборник 10. Основной конденсатосборник 10 периодически опорожняют при наполнении (например, откачивают в мобильные цистерны - не показана).Так как потоки попутного газа в камере охлаждения 8 и корпусе 6 разнонаправлены, то охлаждение попутного газа в камере охлаждения 8 происходит постепенно от входа к выходу, а в корпусе 6 происходит постепенный нагрев попутного газа от входа к выход. При этом объем газа увеличивается от входа в выходу в корпусе 6 и из-за его небольшого поперечного сечения придерживается постоянная скорость потока и, как следствие давления по всей длине корпуса 6, на выходе которого устанавливают объемную камеру 11 для повышения давления попутного газа путем торможения. В результате в объемной камере 11 резко повышается давление и низкотемпературные компоненты и/или вода конденсируется с резким повышением температуры. Конденсат из объемной камеры 11 стекает в дополнительный конденсатосборник 12, куда выдавливается потоком газа из корпуса 6 газ из этой камеры 11. Конденсат из дополнительного конденсатосборника 12 периодически (например, при помощи регулируемой задвижки 13) отбирается в основной конденсатосборник 10, а газ, все еще насыщенный паром, из дополнительного конденсатосборника 12 откачивается струйным насосом 4 через регулируемый штуцер 14 (для исключения резкого падения давления в дополнительном конденсатосборнике 12 и объемной камере 11) и вместе с основным потоком попутного газа направляется в камеру охлаждения 8 для осушки. Для исключения срыва потока попутного газа перед подпорным насосом 5 может быть установлена компенсационная камера 15 для накапливания газа. Из камеры охлаждения 8 блока 2 предварительно осушенный попутный газ поступает при необходимости на следующие ступени очистки 16 (показаны условно). При этом при использовании не требуется никаких дополнительных реагентов для осушки (абсорбентов, хладагентов или т.п.) Все конструктивные элементы просты в изготовлении, обслуживании и ремонте, так как отсутствуют подвижные сложно изготавливаемые конструктивные элементы.

Предлагаемый способ предварительной осушки попутного нефтяного газа прост в использовании и не требует дополнительных реагентов для реализации.

Похожие патенты RU2718936C1

название год авторы номер документа
СПОСОБ ГАЗОДИНАМИЧЕСКОЙ СЕПАРАЦИИ 2015
  • Зиберт Генрих Карлович
  • Зиберт Алексей Генрихович
  • Валиуллин Илшат Минуллович
RU2606427C2
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА С ПОСЛЕДУЮЩИМ СЖИЖЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Лазарев Александр Николаевич
  • Косенков Валентин Николаевич
  • Савчук Александр Дмитриевич
RU2496068C1
СПОСОБ ГАЗОДИНАМИЧЕСКОЙ СЕПАРАЦИИ 2007
  • Запорожец Евгений Петрович
  • Зиберт Алексей Генрихович
  • Зиберт Генрих Карлович
  • Валиуллин Илшат Минуллович
RU2352878C1
ВИХРЕВОЙ ТЕПЛООБМЕННЫЙ СЕПАРАТОР ДЛЯ ОЧИСТКИ ГАЗА ОТ ПАРОВ ПРИМЕСЕЙ 2009
  • Васенин Игорь Михайлович
  • Водолазских Виктор Васильевич
  • Зернаев Петр Васильевич
  • Крайнов Алексей Юрьевич
  • Лядский Олег Витальевич
  • Мазин Владимир Ильич
  • Стерхов Максим Иванович
  • Шрагер Эрнст Рафаилович
RU2396129C1
Способ производства сжиженного природного газа из месторождений с аномально высокими термобарическими условиями 2019
  • Запорожец Евгений Петрович
  • Шостак Никита Андреевич
  • Гафурова Эльвира Сергеевна
RU2730778C1
СПОСОБ ГАЗОДИНАМИЧЕСКОЙ СЕПАРАЦИИ 2004
  • Запорожец Евгений Петрович
  • Зиберт Генрих Карлович
  • Запорожец Евгений Евгеньевич
  • Аверкин Анатолий Иванович
RU2291736C2
СПОСОБ ДОПОЛНИТЕЛЬНОЙ ОСУШКИ И ОЧИСТКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА С СОДЕРЖАНИЕМ СЕРОВОДОРОДА ДЛЯ ДАЛЬНЕЙШЕГО ЕГО ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ТОПЛИВА В ГАЗОГЕНЕРАТОРНЫХ УСТАНОВКАХ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Саетгараев Рустем Халитович
  • Курамшин Юсуп Растямович
  • Тахауов Альберт Мирсаяфович
  • Хамидуллин Наиль Фазылович
RU2554134C1
ГАЗОДИНАМИЧЕСКИЙ СЕПАРАТОР 2007
  • Зиберт Алексей Генрихович
  • Зиберт Генрих Карлович
  • Запорожец Евгений Петрович
  • Валиуллин Илшат Минуллович
  • Юнусов Рауф Раисович
RU2353422C1
СПОСОБ ПОДГОТОВКИ ОТРАБОТАННОГО ГАЗА РЕГЕНЕРАЦИИ 2018
  • Аджиев Али Юсупович
  • Килинник Алла Васильевна
  • Карепина Лариса Николаевна
  • Пастухова Виктория Юрьевна
RU2696437C1
СПОСОБ КОМПЛЕКСНОЙ ОСУШКИ И ОЧИСТКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА ЦЕНТРОБЕЖНОЙ СЕПАРАЦИЕЙ И МЕМБРАННОЙ ФИЛЬТРАЦИЕЙ С ПОСЛЕДУЮЩИМ ВИХРЕВЫМ СЖИЖЕНИЕМ 2013
  • Косенков Валентин Николаевич
  • Лазарев Александр Николаевич
  • Симонова Ольга Валентиновна
  • Савчук Александр Дмитриевич
RU2553922C2

Иллюстрации к изобретению RU 2 718 936 C1

Реферат патента 2020 года Способ предварительной осушки попутного нефтяного газа

Предложение относится к нефтегазодобывающей промышленности, а именно к способам по осушке попутного нефтяного газа. Способ предварительной осушки попутного нефтяного газа, включающий подачу потока высоконапорного попутного газа в корпусе с соплом, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов при охлаждении, отделение конденсата от газовой фазы, повышение давления газа путем торможения, причем исходный газ также охлаждают при теплообмене с хладагентом. Предварительно определяют компонентный состав попутного газа и температуру кипения наиболее низкотемпературных компонентов и/или воды, находящейся в попутном газе, которые являются хладагентом. Определяют давление кипения низкотемпературных компонентов и/или воды при температуре поступающего газа. Из основного потока газа выделяют и направляют в корпус через сопло часть потока газа, достаточную для обеспечения высоконапорного потока через сопло, в котором скорость потока обеспечивает поддержание давления для точки кипения низкотемпературных компонентов и/или воды в корпусе, вставленном в камеру охлаждения, в которой происходит отделение конденсата от газовой фазы основного потока газа для отбора конденсата в основной конденсатосборник из нижней точки, а осушенного газа - в следующую ступень обработки. Обеспечивают встречные потоки газа в корпусе и камере охлаждения, на выходе которой производят повышение давления газа путем торможения в объемной камере, сообщенной с дополнительным конденсатосборником для сброса образовавшегося конденсата из объемной камеры и газа, проходящего через корпус. Из дополнительного конденсатосборника конденсат периодически направляют в основной конденсатосборник, а газ - откачивают струйным насосом, установленным перед камерой охлаждения после разделения потока. В камере охлаждения поддерживают температуру ниже температуры насыщения пара при делении перекачки, но выше температуры замерзания воды. Предлагаемый способ предварительной осушки попутного нефтяного газа прост в использовании и не требует дополнительных реагентов для реализации. 1 ил.

Формула изобретения RU 2 718 936 C1

Способ предварительной осушки попутного нефтяного газа, включающий подачу потока высоконапорного попутного газа в корпусе с соплом, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов при охлаждении, отделение конденсата от газовой фазы, повышение давления газа путем торможения, причем исходный газ также охлаждают при теплообмене с хладагентом, отличающийся тем, что предварительно определяют компонентный состав попутного газа и температуру кипения наиболее низкотемпературных компонентов и/или воды, находящейся в попутном газе, которые являются хладагентом, определяют давление кипения низкотемпературных компонентов и/или воды при температуре поступающего газа, причем из основного потока газа выделяют и направляют в корпус через сопло часть потока газа, достаточную для обеспечения высоконапорного потока через сопло, в котором скорость потока обеспечивает поддержание давления для точки кипения низкотемпературных компонентов и/или воды в корпусе, вставленном в камеру охлаждения, в которой происходит отделение конденсата от газовой фазы основного потока газа для отбора конденсата в основной конденсатосборник из нижней точки, а осушенного газа – в следующую ступень обработки, при этом обеспечивают встречные потоки газа в корпусе и камере охлаждения, на выходе которой производят повышение давления газа путем торможения в объемной камере, сообщенной с дополнительным конденсатосборником для сброса образовавшегося конденсата из объемной камеры и газа, проходящего через корпус, из дополнительного конденсатосборника конденсат периодически направляют в основной конденсатосборник, а газ – откачивают струйным насосом, установленным перед камерой охлаждения после разделения потока, причем в камере охлаждения поддерживают температуру ниже температуры насыщения пара при делении перекачки, но выше температуры замерзания воды.

Документы, цитированные в отчете о поиске Патент 2020 года RU2718936C1

СПОСОБ ГАЗОДИНАМИЧЕСКОЙ СЕПАРАЦИИ 2015
  • Зиберт Генрих Карлович
  • Зиберт Алексей Генрихович
  • Валиуллин Илшат Минуллович
RU2606427C2
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО РАЗДЕЛЕНИЯ ГАЗА НА ФРАКЦИИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Бекишов Николай Петрович
  • Бекишов Сергей Николаевич
  • Кирсанов Юрий Алексеевич
RU2312279C2
Способ использования углеводородного газа и модульная компрессорная установка для его осуществления 2018
  • Власов Артем Игоревич
  • Калинин Владимир Викторович
  • Федоренко Валерий Денисович
  • Горюнов Сергей Владимирович
  • Крестовских Елена Владимировна
  • Белова Ольга Владимировна
RU2692859C1
СПОСОБ ОСУШКИ И ОЧИСТКИ ПРИРОДНОГО ГАЗА С ПОСЛЕДУЮЩИМ СЖИЖЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Лазарев Александр Николаевич
  • Косенков Валентин Николаевич
  • Савчук Александр Дмитриевич
RU2496068C1
WO 2002056999 A1, 25.07.2002
US 4061481 A, 06.12.1977.

RU 2 718 936 C1

Авторы

Гаврилов Алексей Владимирович

Амеров Ринат Рифович

Кашапов Айрат Аксанович

Даты

2020-04-15Публикация

2019-12-17Подача