СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА Российский патент 2018 года по МПК C10L10/14 C10G45/58 C10G65/02 C10L1/04 

Описание патента на изобретение RU2673558C1

Изобретение относится к способу получения дизельного топлива с использованием гидрогенизационных процессов переработки нефтяного сырья в присутствии катализаторов, для изменения структурного скелета углеводородов, и может быть использовано на нефтеперерабатывающих заводах, имеющих соответствующее технологическое оборудование.

В настоящее время дизельные топлива выпускаются по пяти ГОСТ, в которых указаны требования к основным показателям, определяющим специфику эксплуатации техники, качественную работу двигателей и сезонное применение (таблица 1). Следует отметить, что практически у всех улучшены значения показателей, которые отвечают за экологию - содержание серы снижено до 10 мг/кг, содержание полициклических ароматических углеводородов до 8% масс, для улучшения низкотемпературных характеристик используются керосиновые фракции и депрессорно-диспергирующие присадки. Для обеспечения надежной работы двигателя и обеспечения требований ГОСТ в дизельные топлива вовлекаются и другие присадки отечественного и зарубежного производства: противоизносные присадки до 0,04% масс, и промоторы воспламенения до 0,30% масс.Концентрация депрессорно-диспергирующих присадок подбирается к конкретному углеводородному составу фракций, вовлекаемых в композицию топлива.

Так ГОСТ Р 52368-2005 (ЕН 590: 2009) и ГОСТ 32511-2013 (ЕН 590:2009) включают по одиннадцать марок каждый, ГОСТ 305-2013 - 7 марок, ГОСТ Р 55473-2013 - 5 марок и ГОСТ РВ 9130-002-2011 - 5 марок.

При применении дизельных топлив в межсезонье возникает проблема, связанная с заменой марок дизельного топлива для умеренного климата на марки дизельного топлива для зимнего и арктического климата. Кроме того, каждая из этих марок требует раздельного транспортирования и хранения.

Все выше сказанное позволяет сделать вывод о необходимости создания всесезонного унифицированного дизельного топлива. Перед авторами стояла задача разработать такой способ получения всесезонного унифицированного дизельного топлива, которое могло бы обеспечить надежную работу наземной техники, а также и судовой техники (обязательным требованием для топлив судовой техники является, что значение температуры вспышки в закрытом тигле должно быть не ниже 62°С), в течение всего года независимо от сезонных изменений температуры окружающего воздуха и соответствовать следующим требованиям:

Цетановое число, не менее 51,0 Массовая доля серы, мг/кг, не более 10,0 Плотность при 15°С, кг/м3 800,0 - 845,0 Температура вспышки в закрытом тигле, °С, не ниже 62 Кинематическая вязкость при 40°С, мм2 1,200 - 4,500 Температура помутнения, °С, не выше минус 35 Предельная температура фильтруемости, °С, не выше минус 45 Температура застывания, °С, не выше минус 55.

Производство всесезонного унифицированного дизельного топлива, с

заданными физико-химическими свойствами без компаундирования различных

фракций должно быть экономичным и актуальным.

При просмотре источников научно-технической и патентной литературы были выявлены технические решения частично решающие поставленные задачи.

Так, известен способ получения моторного топлива с требуемыми низкотемпературными показателями путем гидрогенизационной переработки средних дистиллятов в присутствии катализаторов при повышенных температуре и давлении. В известном способе в качестве средних дистиллятов используют смесь прямогонной среднедистиллятной фракции нефтяного происхождения и керосино-газойлевой фракции синтетической нефти, полученной по технологии Фишера-Тропша, в соотношении соответственно от 85:15 до 55:45% об., в качестве процесса гидрогенизационной переработки используют двухстадийную технологию, включающую гидроочистку смесевого сырья с последующей гидроизодепарафинизацией стабильного продукта, затем после стадии гидроизодепарафинизации продуктовый поток подвергают ректификации с выделением легкой фракции, выкипающей внутри интервала температур 135-230°С, и тяжелой, выкипающей внутри интервала температур 230-360°С, осуществляют смешение тяжелой фракции с 15-50% об. легкой фракции с получением компонента низкозастывающего дизельного топлива для арктических условий, а остаток легкой фракции в количестве 50-85% об. выводят в качестве компонента авиационного керосина. [1 - RU Патент №2623088 C10G 65/02, C10G 45/58 2017 г.].

Недостатком данного изобретения является использование керосино-газойлевой фракции синтетической нефти, полученной по технологии Фишера-Тропша и сложность подбора фракций, как в % соотношении, так и в пределах выкипания. Известный способ не позволяет получить топливо, удовлетворяющее требованию всесезонного унифицированного дизельного топлива по показателю «Температура вспышки в закрытом тигле».

Известен также способ получения арктического дизельного топлива путем прямой перегонки нефти с выделением дизельной фракции 160-360°С, вторичной перегонки ее на установке подготовки сырья процесса "Парекс" с выделением фракций НК-200° и 300-360°С, депарафинизации фракции 200- 300°С с последующей гидроочисткой и компаундированием депарафинированной фракции 200-300°С, бензиновой фракции НК-200°С от вторичной перегонки дизельного топлива. Полученное арктическое топливо имеет предельную температуру фильтруемости не ниже минус 39°С и температуру вспышки в закрытом тигле не выше 35°С [2 - Энглин Б.А. и др. Получение низкозастывающих дизельных топлив из денормализатов процесса Парекс // Нефтепереработка и нефтехимия. - 1978. - №1 - с. 1-4].

Недостатком данного способа является выделение узких фракций и компаундирование этих фракций, а также сложность компонентного состава. Известный способ не позволяет получить топливо, удовлетворяющее требованию к значениям предельной температуры фильтруемости - не выше минус 45°С (минус 39°С) и температуры вспышки в закрытом тигле - не ниже 62°С (35°С).

Известен способ получения дизельных топлив зимних и арктического сортов с применением специально разработанного катализатора. Катализатор включает смесь высококремнеземных цеолитов, гидрирующие переходные металлы: никель, вольфрам и/или молибден и дополнительно содержит промотор - оксид бора или оксид фосфора, или их смесь. В качестве смеси высококремнеземных цеолитов содержит тройную смесь из цеолитов: широкопористого фожазита - ультрастабильного USY, среднепористого ZSM-12 или ZSM-22, а также пентасила ЦВН или ZSM-11, при содержании кислотных центров в цеолитах в диапазоне 350-1030 мкмоль/г, в качестве связующего содержит оксид алюминия. Способ состоит их технологического процесса изодепарафинизации дизельных дистиллятов с использованием разработанного катализатора. В качестве дизельных дистиллятов используют гидроочищенные прямогонные дизельные дистилляты, процесс проводят при температуре 250-400°С, давлении 2-5 МПа, объемной скорости подачи сырья 2-4 час-1, при соотношении Н2/сырье, равном 400-1200 нм3/м3, что обеспечивает высокий выход целевого продукта (92-94%). [3 -RU Патент №2549617 C10G 65/02, B01J 29/072 2015 г. ].

Полученный указанным способом конечный продукт имеет предельную температуру фильтруемости минус 42 - минус 44°С, а температуру вспышки в закрытом тигле 32°С - 34°С, что не обеспечивает требований к всесезонному унифицированному дизельному топливу.

Известен способ получения экологически чистого дизельного топлива (ЭЧДТ) путем смешения стандартного дизельного топлива с биодобавкой - в качестве которой используют бутиловый эфир рыжикового масла, количество которого в смеси с дизельным топливом достигает 10 масс. %, при этом массовое соотношение при компаундировании полученных компонентов составляет: дизельное топливо 90-99, биодобавка: бутиловые эфиры рыжикового масла 1-10. Полученное экологически чистое дизельное топливо для двигателей внутреннего сгорания обладает хорошей смазывающей способностью и низким содержанием общей серы [4 - RU Патент №2616297 C10L 1/08, C10L 1/00 2017 г. ], однако не удовлетворяет требованиям разрабатываемого всесезонного унифицированного дизельного топлива -температура застывания - минус 17°С.

Известен способ получения арктического дизельного топлива включающий первичную перегонку нефти с выделением керосиновой фракции 180-220°С, 96% которой перегоняется от 180°С, которую компаундируют с легким атмосферным газойлем, 96% которого перегоняется до 280°С в соотношении 2:3 и введением депрессорной присадки Difron 315 в концентрации 0,55 г в органическом растворителе. [5 - RU Патент №2575256 C10L 1/10 2016 г. ].

Недостатком данного изобретения является то, что даже содержание в конечном продукте депрессорной присадки Difron 315, которая понижает предельную температуру фильтруемости до минус 39°С и температуру застывания до минус 53°С, но не понижает температуру помутнения – минус 17°С, но также конечный продукт имеет температуру вспышки в закрытом тигле 35°С, что не позволяет получить топливо, удовлетворяющее требованиям к всесезонному унифицированному дизельному топливу: температура помутнения не выше минус 35°С, предельная температура фильтруемости не выше минус 45°С и температура вспышки в закрытом тигле не ниже 62°С.

Известен способ получения низкосернистого низкозастывающего дизельного топлива, где гидроочищенную дизельную фракцию, содержащую 0,001% масс, и менее серы, смешивают с водородом и направляют в реактор, в котором верхним слоем загружен катализатор изодепарафинизации на основе цеолита, а нижним слоем - катализатор гидрофинишинга, соотношение объемов которых составляет от 5:1 до 20:1. Процессы изодепарафинизации и гидрофинишинга проводят при температурах 300-380°С, давлениях 4,0-5,5 МПа, объемных скоростях подачи сырья (по отношению к объему катализатора изодепарафинизации) 2,0-6,0 ч-1, соотношениях водород/сырье 350:1-700:1 нл/л. с последующим отделением водородосодержащего газа и отгонкой легких углеводородов, кипящих при температуре ниже 180°С [6 - RU Патент №2616003 C10L 10/16, 2017 г. ].

Недостатком данного способа является необходимость отгонки легких фракции до 180°С, что не допустимо для зимних дизельных топлив, которые для легкости запуска при отрицательных температурах должны содержать не менее 10% углеводородов выкипающих до 180°С.

Известен способ получения низкозастывающего дизельного топлива путем гидрогенизационной переработки нефтяного сырья в качестве которого используют смесь газойля прямой перегонки нефти и широкой бензиновой фракции замедленного коксования, в соотношении от 95:5% масс, до 79:30% масс, с последующей ректификацией гидрогенизата с выделением легкой и тяжелой дизельных фракции, их дальнейшим смешением эту смесь подвергают последовательно гидроочистке, гидродепарафинизации и дополнительной гидроочистки. Все технологические процессы проходят в присутствии катализаторов при повышенной температуре и давлении. [7 - RU Патент №2527564 C10G 65/00, 2014 г. ].

Недостатком данного способа является необходимость смешения легкой дизельной фракции и тяжелой дизельной фракции, а дизельное топливо, полученное по выше приведенному способу, имея предельную температуру фильтруемости минус 38°С, цетановое число - 48 и температурой вспышки в закрытом тигле - 50°С, не удовлетворяет требованиям разрабатываемого топлива.

Наиболее близким по технической сущности к изобретению и взятым за прототип является способ получения дизельного топлива, в котором фракцию нефти, выкипающую в пределах 170-340°С, или ее смесь с газойлем замедленного коксования и/или каталитического крекинга, выкипающих в пределах 170-340°С подвергают последовательно гидроочистки, гидродепарафинизации и глубокой стабилизацией конечного продукта в который вводят в количестве 0,02 - 0,04% масс, противоизносную присадку и 0,15 - 0,30% масс, промотор воспламенения, что позволяют получить показатели качества, удовлетворяющие дизельному топливу как для умеренного климата, так и для холодного и арктического климата:

Цетановое число, не менее 51 Плотность при 15°С, кг/м3 820 - 840 Температура вспышки в закрытом тигле, °С, не менее 55 Кинематическая вязкость при 40°С, мм2 2,00 - 4,00 Предельная температура фильтруемости, °С, не выше минус 44

(8 - RU Патент №2559877 C10L 1/00, 1/04, 1/06, 1/08,2015 г. прототип).

Топливо, которое является всесезонным и удовлетворяет требованиям ГОСТ Р 52368-2005 (ЕН 590:2009) и ГОСТ 32511-2013 (ЕН 590:2009), но не удовлетворяет требованиям ГОСТ 305-2013 и ГОСТ РВ 9130-002-2011 по показателю «Температура вспышки в закрытом тигле» (не ниже 62°С), что не позволяет использовать такое топливо в двигателях судовой техники, т.е. оно не является унифицированным.

Технический результат изобретения - сокращение номенклатуры применяемых марок дизельного топлива (вместо 39 марок - одна) с одновременным расширением видов техники: - не только в двигателях наземной, но и судовой техники.

Указанный технический результат достигается тем, что в способе получения всесезонного унифицированного дизельного топлива из смеси состоящей из газойлевых фракций атмосферной и вакуумной перегонки и фракций вторичной переработки нефтяного сырья, которую подвергают гидроочистке и гидрокрекингу, согласно изобретению, полученный продукт после гидроочистки и гидрокрекинга подвергают последовательно гидродеароматизации в присутствии никелькобальтмолибденового катализатора и гидроизомеризации в присутствии платиносодержащего катализатора, после чего осуществляют отгонку фракции, выкипающей в интервале 175°С-335°С и являющейся целевым продуктом.

Новым в заявленном способе является последовательное использование процессов гидроочистки, гидрокрекинга, гидродеароматизации и гидроизомеризации с применением известных катализаторов: никелькобальтмолибденовый катализатор - используется для гидрообессеривания; платиносодержащий катализатор используется для расщепления углеводородов.

Катализаторы - оксиды никеля-кобальта-молибдена на алюминиево-оксидной основе: насыпная масса в уплотненном состоянии - 1,27 г/см3, номинальный размер 1,3-2,5 мм. Могут быть использованы катализаторы фирмы CRITERION или аналогичные катализаторы других производителей.

На фиг. 1 представлена блок-схема технологического процесса получения всесезонного унифицированного дизельного топлива.

Гидродеароматизации (установка 7) проводится в присутствии никелькобальтмолибденового катализатора химизм и механизм заключается в гидрировании непредельных и ароматических углеводородов с образованием нафтеновых и парафиновых углеводородов. После гидроочистки и гидрокрекинга дизельное топливо содержит: сера до 50-150 мг/кг, азота до 180 мг/кг моноциклической ароматики до 30% масс, бициклической ароматики до 10% масс, и полициклической ароматики до 3% масс. То после гидродеароматизации дизельное топливо содержит: сера не более 10 мг/кг, азота до 3 мг/кг моноциклической ароматики до 20% масс, бициклической ароматики до 1% масс и полициклической ароматики до 1% масс. Следует отметить, что процесс гидродепарафинизации проведенный после гидрокрекинга снижает содержание серы до 30-50 мг/кг, а температуру застывания полученного дизельного топлива до минус 45°С.

При гидроизомеризации (установка 8) в присутствии платиносодержащего катализатора осуществляется: разрыв цепей парафиновых углеводородов с получением низкокипящих изопарафинов; у нафтеновых углеводородов, которые вступают в реакции изомеризации, происходит раскрытие колец с получением изопарафинов; из ароматических углеводородов в результате реакций изомеризации получаются изопарафины и нафтены, а олефины также через реакции изомеризации превращаются в изопарафины.

В результате химических превращений, которые происходят в установках гидродеароматизации и гидроизомеризации целевой продукт, который получают заявляемым способом, состоит в основном из парафинов и изопарафинов с низкой молекулярной массой, что обеспечивает хорошую воспламеняемость всесезонного унифицированного дизельного топлива и не требует введения в его состав промоторов воспламенения.

Способ осуществляется следующим образом.

Обезвоженная и обессоленная нефть с установки ЭЛОУ (установка 2, фиг. 1) поступает и перерабатывается на установках атмосферно-вакуумной трубчатки АВТ (установки 3, фиг. 1) Отогнанные газойлевые фракции атмосферной и вакуумной перегонки нефти смешиваются с дизельными фракциями вторичной переработки (узел 4, фиг. 1).

Далее смесь поступает на гидроочистку (установка 5, фиг. 1) и гидрокрекинг (установка 6, фиг. 1) в присутствии алюмокобальтмолибденовых (АКМ) или алюмоникельмолибденовых (АНМ) катализаторов, гидрирующими компонентами которых являются оксиды и сульфиды никеля, кобальта, молибдена, как и в способе - прототипе. Гидроочистка проводится при температуре от 260 до 400°С, давлении водорода от 2,5 до 4 МПа и объемной скорости подачи сырья 1,0-2,2 ч-1. После гидроочистки проводят гидрокрекинг при температуре 330-360°С, объемной скорости подачи 2,5 ч-1 и при давлении 3,5 МПа.

После гидрокрекинга полученный продукт, содержащий 50-100 мг/кг серы, направляется на гидродеароматизацию (установка 7, фиг. 1), где применяют никелькобальтмолибденовой катализатор, при температурах на входе и выходе в установке - 330-380°С и 350-390°С, соответственно. Давление на входе и на выходе установки - 105-110 кг/см2, скорость подачи продукта 0,5-1,5 ч-1 и объемном соотношении водородосодержащего газа (ВСГ) к продукту (500-1500): 1, что обеспечивает: содержание серы менее 10 мг/кг; полициклических ароматических углеводородов менее 8% масс; температуру застывания до минус 50°С.

Далее продукт поступает на установку гидроизомеризации (установка 8, фиг. 1), где применяют платиносодержащий катализатор, при температурах на входе и выходе в установке - 330-380°С и 350-390°С, соответственно. Давление на входе и на выходе установки - 105-110 кг/см2, скорость подачи сырья 0,5-1,5 ч-1 и объемном соотношении водородосодержащего газа (ВСГ) к сырью (500-1500): 1. После проведения гидроизомеризации отбирают дизельную фракцию 175°С-335°С. Полученный в этих условиях продукт является целевым и имеет - температуру помутнения ниже минус 35°С, предельную температуру фильтруемости ниже минус 45°С и температуру застывания ниже минус 55°С.

Заявленный способ получения всесезонного унифицированного дизельного топлива позволяет получить топливо, соответствующее требованиям СТО 08151164-0230-2017 при отборе фракции в интервале 175°С-335°С обеспечив требования к температуре вспышки в закрытом тигле не ниже 62°С, что подтверждается результатами испытаний (таблица 2).

Данные, приведенные в таблице 2, показывают, что фракции, полученные по предлагаемому способу, удовлетворяют требованиям по показателям «Содержание серы» и «Цетановое число».

Из данных, представленных в таблице 2, следует, что образец №1 не удовлетворяет требованиям к ДТУВ по показателю «Температура вспышки в закрытом тигле». У образца №3 за счет повышения конца кипения ухудшились низкотемпературные характеристики. Значения показателей «Плотность при 15 °С» и «Кинематическая вязкость при 40°С» выбранных фракций удовлетворяют требованиям, предъявляемым к ДТУВ.

Из данных таблицы 2 также следует, что образец №2 полностью удовлетворяет требованиям к ДТУВ по указанным показателям, за исключением показателя «Смазывающая способность».

Целевым продуктом данного способа является образец №2, выкипающий в интервале 175°С-335°С, у которого при необходимости показатель «Смазывающая способность» корректируют в соответствии с требованиями СТО 08151164-0230-2017 «Нефтепродукты. Топлива дизельные. Дизельное топливо унифицированное всесезонное» до нужного уровня отечественными противоизносными присадками в количестве 0,02-0,04% на целевой продукт.

Технология корректировки показателей стандартная, которая применяется на всех отечественными нефтеперерабатывающими заводами выпускающих дизельные топлива ЕВРО.

В результате получают всесезонное унифицированное дизельное топливо, соответствующее следующим требованиям СТО 08151164-0230-2017:

Цетановое число, не менее 51,0 Содержание серы, мг/кг, не более 10,0 Плотность при 15°С, кг/м3 800,0 - 845,0 Температура вспышки в закрытом тигле, °С, не ниже 62 Кинематическая вязкость при 40°С, мм2 1,200 - 4,500 Температура помутнения, °С, не выше минус 35 Предельная температура фильтруемости, °С, не выше минус 45 Температура застывания, °С, не выше минус 55.

Способ получения унифицированного всесезонного дизельного топлива, обеспечивает соответствие физико-химических и эксплуатационных свойств топлива требованиям СТО 08151164-0230-2017 «Нефтепродукты. Топлива дизельные. Дизельное топливо унифицированное всесезонное».

Предлагаемый способ позволить расширить производство всесезонного унифицированного дизельного топлива и снизит затраты при транспортировании, хранении и эксплуатации техники, в том числе судовой, с возможностью использования топлива на всей территории Российской Федерации.

Авторам не удалось выявить такую совокупность существующих признаков, именно, заявляемую последовательность - гидроочистка, гидрокрекинг, гидродеароматизация и гидроизомеризация с применением конкретных катализаторов, изложенную в формуле изобретения, что позволило сделать вывод о патентоспособности технического решения

Применение изобретения позволит за счет совокупности существенных признаков (отличительных и ограничительных) получить технический результат, что подтверждается данными таблицы 2.

Похожие патенты RU2673558C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА 2019
  • Карпов Николай Владимирович
  • Вахромов Николай Николаевич
  • Дутлов Эдуард Валентинович
  • Пискунов Александр Васильевич
  • Бубнов Максим Александрович
  • Гудкевич Игорь Владимирович
  • Борисанов Дмитрий Владимирович
RU2736084C1
СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА 2020
  • Карпов Николай Владимирович
  • Вахромов Николай Николаевич
  • Дутлов Эдуард Валентинович
  • Пискунов Александр Васильевич
  • Бубнов Максим Александрович
  • Гудкевич Игорь Владимирович
  • Борисанов Дмитрий Владимирович
RU2743762C1
ДИЗЕЛЬНОЕ ТОПЛИВО УНИФИЦИРОВАННОЕ ВСЕСЕЗОННОЕ 2017
  • Лунева Вера Всеволодовна
  • Шарин Евгений Алексеевич
  • Середа Василий Александрович
  • Матин Максим Евгеньевич
RU2655606C1
ДИЗЕЛЬНОЕ ТОПЛИВО УНИФИЦИРОВАННОЕ ВСЕСЕЗОННОЕ 2023
  • Лунева Вера Всеволодовна
  • Середа Василий Александрович
RU2815817C1
ВСЕСЕЗОННОЕ УНИВЕРСАЛЬНОЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2015
  • Булатников Владимир Валентинович
  • Шуверов Владимир Михайлович
RU2631116C2
УНИВЕРСАЛЬНОЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2014
  • Булатников Владимир Валентинович
  • Зайнутдинов Рустам Амирович
  • Юхнев Владимир Анатольевич
  • Шуверов Владимир Михайлович
RU2559877C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2016
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Красильникова Людмила Александровна
  • Груданова Алёна Игоревна
  • Шмелькова Ольга Ивановна
  • Болдушевский Роман Эдуардович
RU2623088C1
Катализатор гидроизодепарафинизации дизельных фракций для получения низкозастывающего дизельного топлива и способ получения низкозастывающего дизельного топлива с его использованием 2023
  • Пимерзин Алексей Андреевич
  • Глотов Александр Павлович
  • Гусева Алёна Игоревна
  • Андреева Анна Вячеславовна
  • Засыпалов Глеб Олегович
  • Климовский Владимир Алексеевич
  • Абрамов Егор Сергеевич
RU2826904C1
АРКТИЧЕСКОЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2016
  • Береснева Екатерина Викторовна
  • Лунева Вера Всеволодовна
  • Шарин Евгений Алексеевич
  • Середа Василий Александрович
  • Губарева Вера Алексеевна
RU2618231C1
СПОСОБ ПОЛУЧЕНИЯ ОСНОВ НИЗКОЗАСТЫВАЮЩИХ АРКТИЧЕСКИХ МАСЕЛ 2015
  • Заглядова Светлана Вячеславовна
  • Китова Марианна Валерьевна
  • Маслов Игорь Александрович
  • Кашин Евгений Васильевич
  • Антонов Сергей Александрович
  • Пиголева Ирина Владимировна
RU2570649C1

Иллюстрации к изобретению RU 2 673 558 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ВСЕСЕЗОННОГО УНИФИЦИРОВАННОГО ДИЗЕЛЬНОГО ТОПЛИВА

Изобретение относится к способу получения низкосернистого унифицированного всесезонного дизельного топлива из смеси, состоящей из газойлевых фракций атмосферной и вакуумной перегонки и фракций вторичной переработки нефтяного сырья, которую подвергают гидроочистке и гидрокрекингу, при этом полученный продукт после гидроочистки и гидрокрекинга подвергают последовательно гидроароматизации в присутствии никелькобальтмолибденового катализатора и гидроизомеризации в присутствии платиносодержащего катализатора и осуществляют отгонку фракции, выкипающей в интервале 175-335 °С и являющейся целевым продуктом. Технический результат заключается в сокращении номенклатуры применяемых марок дизельного топлива, а также в его использовании и для наземного транспорта, и для судовой техники. 1 ил., 2 табл.

Формула изобретения RU 2 673 558 C1

Способ получения всесезонного унифицированного дизельного топлива из смеси, состоящей из газойлевых фракций атмосферной и вакуумной перегонки и фракций вторичной переработки нефтяного сырья, которую подвергают гидроочистке и гидрокрекингу, отличающийся тем, что полученный продукт после гидроочистки и гидрокрекинга подвергают последовательно гидродеароматизации в присутствии никелькобальтмолибденового катализатора и гидроизомеризации в присутствии платиносодержащего катализатора и осуществляют отгонку фракции, выкипающей в интервале 175°С-335°С и являющейся целевым продуктом.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673558C1

УНИВЕРСАЛЬНОЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2014
  • Булатников Владимир Валентинович
  • Зайнутдинов Рустам Амирович
  • Юхнев Владимир Анатольевич
  • Шуверов Владимир Михайлович
RU2559877C1
УСОВЕРШЕНСТВОВАННЫЙ СПОСОБ КОНВЕРСИИ ТЯЖЕЛОГО СЫРЬЯ В СРЕДНИЕ ДИСТИЛЛЯТЫ С ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКОЙ, ДО ПОДАЧИ В УСТАНОВКУ КАТАЛИТИЧЕСКОГО КРЕКИНГА 2012
  • Фенье Фредерик
  • Юг Франсуа
  • Туше Наташа
  • Дюло Юг
RU2601414C2
ГИДРООБРАБОТКА ЛЕГКОГО РЕЦИКЛОВОГО ГАЗОЙЛЯ В ПОЛНОСТЬЮ ЖИДКОФАЗНЫХ РЕАКТОРАХ 2013
  • Динди Хасан
  • Пулли Алан Говард
  • Та Танх Джия
  • Куперавейдж Мл Винсент Адам
RU2662434C2
EP 2832827 A1, 04.02.2015
VN 10012555 B, 25.04.2014
US 9845435 B2, 19.12.2017
CN 105683339 B, 12.01.2018
WO 2017093534 A1, 08.06.2017
СПОСОБ УЛУЧШЕНИЯ НИЗКОТЕМПЕРАТУРНЫХ СВОЙСТВ И УВЕЛИЧЕНИЯ ВЫХОДА СРЕДНЕДИСТИЛЛЯТНОГО ИСХОДНОГО СЫРЬЯ ЧЕРЕЗ ПОЛНОСТЬЮ ЖИДКОСТНУЮ ГИДРООЧИСТКУ И ДЕПАРАФИНИЗАЦИЮ 2014
  • Динди Хасан
  • Палит Сандип
  • Пулли Алан Говард
  • Мурильо Луис Эдуардо
  • Та Тхань Зя
  • Боугер Брайан
RU2649389C2

RU 2 673 558 C1

Авторы

Шарин Евгений Алексеевич

Лунева Вера Всеволодовна

Середа Василий Александрович

Даты

2018-11-28Публикация

2018-08-15Подача