СПОСОБ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ ДЛЯ 3D ПЕЧАТИ ПРИ ПЛАНИРОВАНИИ РЕЗЕКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У ПАЦИЕНТОВ С ОПУХОЛЕВЫМ ПОРАЖЕНИЕМ Российский патент 2020 года по МПК G16H50/00 A61B34/10 B33Y50/00 

Описание патента на изобретение RU2725075C2

Изобретение относится к медицине, лучевой диагностике и может применяться в рамках персонализированной медицины при планировании хирургического вмешательства у больных с опухолевым поражением поджелудочной железы.

В настоящее время одной из основных принципов современной хирургической онкологии является выполнение функционально щадящих и органосохраняющих оперативных вмешательств. При опухолевом поражении поджелудочной железы радикальность оперативного вмешательства зависит от резектабельности, одним из основных вопросов которой является вовлечение сосудистых структур. В последнее время опухоли, которые ранее признавались как нерезектабельными по причине сосудистой инвазии, поддаются хирургическому лечению по причине осуществления сосудистых реконструкций. В случае проведения данного типа оперативного вмешательства на поджелудочной железе хирургу необходимо предоставить наиболее информативные и приближенные к классическим анатомическим пособиям данные об индивидуальном строении сосудов целиакомезентериального бассейна и их соотношение с опухолью. Данные классических аксиальных томограмм, мультипланарных и криволинейных реконструкций, а также объемного рендеринга уступают трехмерной модели напечатанной методом 3D-принтинга.

Данные полученные при проведении стандартного протокола мультифазной КТ брюшной полости не обладают необходимыми характеристиками для полуавтоматического сегментирования гепато-панкреато-билиарной зоны, а именно наивысшего градиента плотности тканей (артерии и вен), так как:

- отсутствуют фазы максимальной плотности контрастного препарата в сосудах, что затрудняет полуавтомотическую сегментацию, приводя к увеличению времени обработки;

- коэффициенты ослабления рентгеновского излучения законтрастированной крови в просветах артерий и вен при стандартном протоколе сканирования с напряжением на рентгеновской трубке 120 кВ ниже, чем при низкодозовом протоколе с напряжением 100 кВ, что осложняет моделирование.

Данные мировой литературы на тему 3D-принтинга сосудов целиакомезентериального бассейна и опухоли поджелудочной железы отсутствуют. Встречаются единичные публикации только на тему виртуального моделирования гепато-панкреато-билиарной зоны со стандартными настройками протокола КТ брюшной полости (Grenacher L., Thorn М., Knaebel HP., Vetter M., Hassenpflug P., Kraus Т., Meinzer HP., Buchler M.W., Kauffmann G.W., Richter G.M. The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas. Rofo 2005; 177: 1219-1226; Klaub M, Schobinger M, Wolf I., Werner J., Meinzer HP., Kauczor HU., Grenacher L. Value of three-dimensional reconstructions in pancreatic carcinoma using multidetector CT: Initial results. World J Gastroenterol 2009 December 14; 15(46): 5827-5832). Преимуществом данной методики в сравнении с виртуальным трехмерным моделированием является получение «живой модели» области будущего оперативного вмешательства в масштабе 1:1.

К недостаткам можно отнести дополнительные временные и финансовые затраты на печать виртуальной трехмерной модели.

Техническим результатом заявленного изобретения является получение КТ изображений с наибольшим градиентом плотности между структурами для наиболее быстрого и точного сегментирования для создания виртуальной модели в формате STL направляемой на 3D-принтинг.

Указанный технический результат достигается за счет того, что также как и в известном способе выполняют КТ с внутривенным болюсным контрастным усилением гепатопанкреатобилиарной зоны по низкодозовому протоколу с получением фаз наибольшего градиента плотности в артериях и венах портальной системы.

Особенностью заявляемого способа является то, что полученные КТ изображения загружают в программу Myrian и производят анатомическую сегментацию изображения, в первой фазе контрастного усиления выделяют артериальное русло, во второй фазе -портальную систему, создают 3D область интереса и используют автоматический протокол «печеночная артерия» для выделения артерий целиакомезентериального бассейна, а также автоматический протокол для выделения портальной вены «воротная вена, твердый фильтр», образование поджелудочной железы выделяют в фазу наибольшего градиента с окружающими здоровыми тканями, далее осуществляют выделение опухоли с применением метода трехмерной интерполяции с оконтуриванием образования на нескольких уровнях в зависимости от размеров и формы, полученные области интереса: артерии, вены, и опухоль отображают на одном экране трехмерного рендеринга под названием «поверхностная область интереса» путем транспортирования недостающего объекта из другой фазы контрастного усиления, полученную виртуальную модель оценивают на наличие ошибок в изображении путем сопоставления с аксиальными КТ срезами, далее полученную трехмерную модель сохраняют в формате сегментации и загружают в программу Materialise для создания файла трехмерной печати STL-файл, полученный файл загружают в программу 3D печати FlashPrint и отправляют на 3D-принтер FlashForge Dreamer, на полученной трехмерной модели удаляют поддерживающие структуры, которые были созданы автоматически в программе FlashPrint.

Способ иллюстрируется подробным описанием, клиническим примером и иллюстрациями, на которых изображено:

Фиг. 1 - загрузка в программу Myrian исследования КТ через протокол «Стандартная КТ».

Фиг. 2 - выбор артериальной фазы контрастного усиления.

Фиг. 3 - добавление новой области интереса для выделения артерий в левом окне программы в графе область интереса, с помощью инструмента «печеночная артерия».

Фиг. 4 - выделение артерий целиакомезентериального бассейна инструментом «область интереса», и отображением в правом нижнем окне результата (поверхностная область интереса включена в верхней вкладке слева).

Фиг. 5 - добавление новой области интереса для выделения воротной вены (в левом окне программы в графе область интереса выбирают инструмент «воротная вена, твердый фильтр»).

Фиг. 6 - транспортирование через левое окно программы (правым кликом на элементах области интереса) данных о выделении воротной вены в артериальную фазу, а также выделение в артериальную фазу опухоли поджелудочной железы с отображением элементов виртуальной модели вместе.

Фиг. 7 - удаление избыточно выделенных элементов на трехмерном изображении с помощью инструмента «вытеснение» в режиме «поверхностная область интереса».

Фиг. 8 - серии с данными о сегментации.

Фиг. 9 - загрузка данных о сегментации в программу Materialise с последующим сохранением в формате STL.

Фиг. 10 - результат печати STL файла на 3D-принтере

Способ осуществляют следующим образом.

На КТ сканере выполняют исследование с применением системы болюс-трекинг. Напряжение на трубке выставляют 100 кВ. Скан болюс-трекинга устанавливают на уровне торакоабдоминального отдела аорты путем выделения на аксиальной томограмме области интереса (ROI). При значении коэффициента ослабления (КО) рентгеновского излучения внутри ROI+160HU осуществляют автоматический старт сканирования с минимальной задержкой 5 секунд для получения ранней артериальной фазы. Портальную фазу выполняют на 37 секунде от начала сканирования. Полученные для каждой фазы данные в виде первой и второй постконтрастных серий аксиальных томограмм реконструируют с толщиной реконструкции 0,625 мм с использованием гибридного фильтра реконструкции.

Далее КТ изображения загружают в программу Myrian, производят анатомическую сегментацию изображения, в первой фазе контрастного усиления выделяют артериальное русло, во второй фазе - портальную систему. Для этого создают 3D-область интереса и используют автоматический протокол «печеночная артерия» для выделения артерий целиакомезентериального бассейна, а также автоматический протокол «воротная вена, твердый фильтр» для выделения портальной вены. Образование поджелудочной железы выделяют в фазу наибольшего градиента с окружающими здоровыми тканями. Выделение опухоли поджелудочной железы осуществляется с применением метода трехмерной интерполяции с оконтуриванием образования на нескольких уровнях в зависимости от размеров и формы. Полученные области интереса (артерии, вены, опухоль) отображают на одном экране трехмерного рендеринга под названием «поверхностная область интереса» путем транспортирования недостающего объекта из другой фазы контрастного усиления. Полученную виртуальную модель оценивают на наличие ошибок в изображении путем сопоставления с аксиальными КТ срезами. При успешной сегментации трехмерная модель сохраняется в формате сегментации, который загружается в программу Materialise для создания файла трехмерной печати (STL-файл). Данный файл загружают в программу 3D печати FlashPrint для отправки на 3D-принтер FlashForge Dreamer. После этого запускают печать. Далее трехмерную модель анализируют на наличие поддерживающих структур, которые в последующем удаляют.

Предложенный нами способ трехмерной реконструкции гепато-панкреато-билиарной зоны с последующей 3D-печатью основан на выполнении низкодозовой КТ в режиме двухфазного спирального сканирования с получением ранней артериальной и портальной фаз, постпроцессорной обработки изображений в программе Myrian (Intrasense, France), создании виртуальной трехмерной модели и файла STL в программе Materialise, и, наконец, отправка полученного файла на 3D-принтер через программу FlashPrint на принтер FlashForge Dreamer.

Клинический пример.

Больной К., 67 лет, образование головки поджелудочной железы (аденокарцинома), состояние после химиотерапии, положительная динамика в виде уменьшения размера образования. Подготавливается к оперативному вмешательству в объеме панкреатодуоденальной резекции.

На КТ сканере (фирма GE Optima 660 (128-рядный томограф с толщиной одного ряда 0,4 мм)) выполнили исследование с применением системы болюс-трекинг.

Напряжение на трубке выставляют 100 кВ. Скан болюс-трекинга устанавливают на уровне торакоабдоминального отдела аорты путем выделения на аксиальной томограмме области интереса (ROI). При значении коэффициента ослабления (КО) рентгеновского излучения внутри ROI+160HU осуществляют автоматический старт сканирования с минимальной задержкой 5 секунд для получения ранней артериальной фазы. Портальная фазу выполняют на 37 секунде от начала сканирования. Полученные для каждой фазы данные в виде первой и второй постконтрастных серий аксиальных томограмм реконструируют с толщиной реконструкции 0,625 мм с использованием гибридного фильтра реконструкции.

Полученное изображение загружали в программу Myrian (Фиг. 1) и производили анатомическую сегментацию изображения, в первой фазе контрастного усиления выделяют артериальное русло (Фиг. 2, Фиг. 3, Фиг. 4), во второй фазе - портальную систему (Фиг. 5). Для этого создают 3D-область интереса и используют автоматический протокол «печеночная артерия» (Фиг. 3) для выделения артерий целиакомезентериального бассейна, а также автоматический протокол «воротная вена, твердый фильтр» (Фиг. 3) для выделения портальной вены. Образование поджелудочной железы выделяют в фазу наибольшего градиента с окружающими здоровыми тканями с помощью инструмента «вытеснение». Выделение опухоли поджелудочной железы осуществляли с применением метода трехмерной интерполяции с оконтуриванием образования на нескольких уровнях в зависимости от размеров и формы. Полученные области интереса (артерии, вены, опухоль) отображают на одном экране трехмерного рендеринга под названием «поверхностная область интереса» путем транспортирования недостающего объекта из другой фазы контрастного усиления (Фиг. 6, Фиг. 7). Полученную виртуальную модель оценивают на наличие ошибок в изображении путем сопоставления с аксиальными КТ срезами. При успешной сегментации трехмерная модель сохраняется в формате сегментации (Фиг. 8), который загружается в программу Materialise (Фиг. 9) для создания файла трехмерной печати (STL-файл). Данный файл загружают в программу 3D печати FlashPrint для отправки на 3D-принтер FlashForge Dreamer. После этого запускают печать. Далее трехмерную модель анализируют на наличие поддерживающих структур, которые в последующем удаляют (Фиг. 10, Фиг. 11).

Трехмерная модель опухоли поджелудочной железы, сосудов может применяться в абдоминальной хирургии при планировании оперативного вмешательства для оценки расположения опухоли и возможности ее резекции. Особую пользу она представляет при планировании резекций поджелудочной железы у пациентов с редкими вариантами строения сосудов целиакомезентериального бассейна, когда анатомо-топографическое взаимоотношение опухоли с сосудами может затруднять ход операции, влиять на общее время ее продолжительности и, как следствие, увеличивать время анестезиологического пособия, кровопотери и т.д. Кроме того, 3D-модель обладает незаменимым преимуществом перед двухмерными изображениями, виртуальными трехмерными реконструкциями и патологоанатомическими препаратами при обучении студентов, ординаторов, так как наглядно демонстрирует особенности той или иной анатомической структуры.

Таким образом, предложенная методика имеет следующие преимущества: проста в выполнении; имеет низкую лучевую нагрузку; не требует большого времени на подготовку и постпроцессорную обработку; позволяет получать данные об области интереса на печатной 3D-модели, масштаб 1:1.

Похожие патенты RU2725075C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ИНДИВИДУАЛИЗИРОВАННОГО АРТИКУЛЯЦИОННОГО 3D ЭНДОПРОТЕЗ-СПЕЙСЕРА КОЛЕННОГО СУСТАВА 2020
  • Алиев Мамед Джавадович
  • Курильчик Александр Александрович
  • Стародубцев Алексей Леонидович
  • Соколовский Владимир Александрович
  • Соколовский Анатолий Владимирович
  • Карпов Владимир Владимирович
RU2736119C2
Способ проектирования хирургического доступа для адреналэктомии 2020
  • Ромащенко Павел Николаевич
  • Майстренко Николай Анатольевич
  • Железняк Игорь Сергеевич
  • Блюмина Софья Григорьевна
RU2767707C1
СПОСОБ МОДЕЛИРОВАНИЯ ОПЕРАТИВНОГО ВМЕШАТЕЛЬСТВА НА ВНУТРЕННИХ ОРГАНАХ 2000
  • Федоров В.Д.
  • Кармазановский Г.Г.
  • Цвиркун В.В.
  • Гузеева Е.Б.
RU2202276C2
СПОСОБ ЛЕЧЕНИЯ ИНФИЦИРОВАННЫХ ОПУХОЛЕЙ ДИСТАЛЬНОГО СЕГМЕНТА БОЛЬШЕБЕРЦОВОЙ КОСТИ С ИСПОЛЬЗОВАНИЕМ ПРЕЦИЗИОННОГО ИНДИВИДУАЛИЗИРОВАННОГО АРТИКУЛЯЦИОННОГО АНАТОМИЧНОГО 3D ЭНДОПРОТЕЗ-СПЕЙСЕРА 2021
  • Курильчик Александр Александрович
  • Стародубцев Алексей Леонидович
  • Иванов Вячеслав Евгеньевич
  • Зубарев Алексей Леонидович
  • Иванов Сергей Анатольевич
  • Алиев Мамед Багир Джавад Оглы
  • Каприн Андрей Дмитриевич
RU2768603C2
Способ оценки внутриносовой аэродинамики 2023
  • Будковая Марина Александровна
  • Рязанцев Сергей Валентинович
  • Кривопалов Александр Александрович
RU2797190C1
Способ визуализации результата хирургического лечения ювенильных ангиофибром носоглотки и основания черепа 2017
  • Грачев Николай Сергеевич
  • Ворожцов Игорь Николаевич
  • Краснов Алексей Сергеевич
RU2649474C1
СПОСОБ ДИАГНОСТИКИ СОСУДИСТОЙ ИНВАЗИИ ПРИ ОПУХОЛЯХ БИЛИОПАНКРЕАТОДУОДЕНАЛЬНОЙ ЗОНЫ 2014
  • Усова Елена Викторовна
  • Кубышкин Валерий Алексеевич
  • Кармазановский Григорий Григорьевич
  • Вишневский Владимир Александрович
  • Цыганков Владимир Николаевич
RU2553946C1
СПОСОБ ОЦЕНКИ ВЕРОЯТНОСТИ НАЛИЧИЯ ТЯЖИСТОЙ ПАРАНЕФРАЛЬНОЙ ЖИРОВОЙ КЛЕТЧАТКИ, СПАЯННОЙ С КАПСУЛОЙ ПОЧКИ, ПРИ ПЛАНИРОВАНИИ ОРГАНОСОХРАНЯЮЩИХ ОПЕРАЦИЙ НА ПОЧКЕ 2020
  • Аляев Юрий Геннадьевич
  • Рапопорт Леонид Моисеевич
  • Цариченко Дмитрий Георгиевич
  • Сирота Евгений Сергеевич
  • Вовденко Станислав Викторович
  • Сирота Анастасия Евгеньевна
RU2736908C1
Способ исследования функции почек при мультиспиральной компьютерной томографии 2017
  • Глыбочко Петр Витальевич
  • Аляев Юрий Генадьевич
  • Хохлачев Сергей Борисович
  • Борисов Владимир Викторович
  • Есилевский Юрий Михайлович
  • Фиев Дмитрий Николаевич
  • Сирота Евгений Сергеевич
  • Проскура Александра Владимировна
  • Юрова Мария Владимировна
RU2673384C1
СПОСОБ ПЛАНИРОВАНИЯ АНАТОМИЧЕСКИХ СУБЛОБАРНЫХ РЕЗЕКЦИЙ ЛЕГКИХ У БОЛЬНЫХ С ПЕРИФЕРИЧЕСКИМИ ОБЪЕМНЫМИ ОБРАЗОВАНИЯМИ НА ОСНОВЕ КТ-АНГИОПУЛЬМОНОГРАФИИ 2015
  • Каприн Андрей Дмитриевич
  • Рубцова Наталья Алефтиновна
  • Халимон Александр Игоревич
  • Пузаков Кирилл Борисович
RU2600282C2

Иллюстрации к изобретению RU 2 725 075 C2

Реферат патента 2020 года СПОСОБ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ ДЛЯ 3D ПЕЧАТИ ПРИ ПЛАНИРОВАНИИ РЕЗЕКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У ПАЦИЕНТОВ С ОПУХОЛЕВЫМ ПОРАЖЕНИЕМ

Изобретение относится к медицине, лучевой диагностике и может быть использовано для трехмерного моделирования для 3D печати при планировании резекций поджелудочной железы у пациентов с опухолевым поражением. Проводят КТ с внутривенным болюсным контрастным усилением гепатопанкреатобилиарной зоны по низкодозовому протоколу с получением фаз наибольшего градиента плотности в артериях и венах портальной системы. Полученные КТ изображения загружают в программу Myrian и производят анатомическую сегментацию изображения. В первой фазе контрастного усиления выделяют артериальное русло, во второй фазе - портальную систему. Создают 3D область интереса и используют автоматический протокол «печеночная артерия» для выделения артерий целиакомезентериального бассейна, а также автоматический протокол для выделения портальной вены «воротная вена, твердый фильтр». Образование поджелудочной железы выделяют в фазу наибольшего градиента с окружающими здоровыми тканями. Далее осуществляют выделение опухоли с применением метода трехмерной интерполяции с оконтуриванием образования на нескольких уровнях в зависимости от размеров и формы. Полученные области интереса: артерии, вены, и опухоль отображают на одном экране трехмерного рендеринга под названием «поверхностная область интереса» путем транспортирования недостающего объекта из другой фазы контрастного усиления. Полученную виртуальную модель оценивают на наличие ошибок в изображении путем сопоставления с аксиальными КТ срезами. Далее полученную трехмерную модель сохраняют в формате сегментации и загружают в программу Materialise для создания файла трехмерной печати STL-файл. Полученный файл загружают в программу 3D печати FlashPrint и отправляют на 3D-принтер FlashForge Dreamer. На полученной трехмерной модели удаляют поддерживающие структуры, которые были созданы автоматически в программе FlashPrint. Способ обеспечивает планирование резекций поджелудочной железы у пациентов с опухолевым поражением за счет печати трехмерной модели области интереса. 11 ил., 1 пр.

Формула изобретения RU 2 725 075 C2

Способ трехмерного моделирования для 3D печати при планировании резекций поджелудочной железы у пациентов с опухолевым поражением, включающий КТ с внутривенным болюсным контрастным усилением гепатопанкреатобилиарной зоны по низкодозовому протоколу с получением фаз наибольшего градиента плотности в артериях и венах портальной системы, отличающийся тем, что полученные КТ изображения загружают в программу Myrian и производят анатомическую сегментацию изображения, в первой фазе контрастного усиления выделяют артериальное русло, во второй фазе - портальную систему, создают 3D область интереса и используют автоматический протокол «печеночная артерия» для выделения артерий целиакомезентериального бассейна, а также автоматический протокол для выделения портальной вены «воротная вена, твердый фильтр», образование поджелудочной железы выделяют в фазу наибольшего градиента с окружающими здоровыми тканями, далее осуществляют выделение опухоли с применением метода трехмерной интерполяции с оконтуриванием образования на нескольких уровнях в зависимости от размеров и формы, полученные области интереса: артерии, вены, и опухоль отображают на одном экране трехмерного рендеринга под названием «поверхностная область интереса» путем транспортирования недостающего объекта из другой фазы контрастного усиления, полученную виртуальную модель оценивают на наличие ошибок в изображении путем сопоставления с аксиальными КТ срезами, далее полученную трехмерную модель сохраняют в формате сегментации и загружают в программу Materialise для создания файла трехмерной печати STL-файл, полученный файл загружают в программу 3D печати FlashPrint и отправляют на 3D-принтер FlashForge Dreamer, на полученной трехмерной модели удаляют поддерживающие структуры, которые были созданы автоматически в программе FlashPrint.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725075C2

СПОСОБ ПРЕДОПЕРАЦИОННОГО ПЛАНИРОВАНИЯ НАКОСТНОГО ОСТЕОСИНТЕЗА ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ 2019
  • Котельников Геннадий Петрович
  • Колсанов Александр Владимирович
  • Панкратов Александр Сергеевич
  • Долгушкин Дмитрий Александрович
  • Зельтер Павел Михайлович
  • Ардатов Сергей Владимирович
  • Огурцов Денис Александрович
  • Жиров Владимир Валерьевич
  • Рубцов Артемий Алексеевич
RU2709838C1
WO 2016195605 A1, 08.12.2016
CN 109273091 A, 25.01.2019
CN 104091347 A, 08.10.2014
НЕРЕСТЮК Я.И
Виртуальная КТ панкреатоскопия в выявлении причин расширения главного панкреатического протока
Высокотехнологическая медицина
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Способ образования коричневых окрасок на волокне из кашу кубической и подобных производных кашевого ряда 1922
  • Вознесенский Н.Н.
SU32A1
КАТОРКИН С.Е
и др
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 725 075 C2

Авторы

Нерестюк Ярослав Игоревич

Рубцова Наталья Алефтиновна

Сидоров Дмитрий Владимирович

Федулеев Михаил Николаевич

Каприн Андрей Дмитриевич

Даты

2020-06-29Публикация

2020-02-12Подача