Рабочее колесо центробежного насоса Российский патент 2020 года по МПК F04D29/22 F04D29/68 

Описание патента на изобретение RU2727275C1

Изобретение относится к области машиностроения и может быть использовано при проектировании центробежных насосов и предназначенного для перекачивания жидкости с расходом Q под напором Н при угловой скорости вращения рабочего колеса ω.

Известно рабочее колесо центробежного насоса, лопастная система которого содержит равномерно распределенные по окружности колеса лопасти, имеющие минимальную толщину (Михайлов А.К., Малюшенко В.В. Лопастные насосы. Теория расчет и конструирование. - М.: "Машиностроение", 1977). Профиль лопастей строится на скелетной линии - кривой, совпадающей с расчетной линией тока жидкости, построение которой выполняется по трем параметрам: углу входа, углу выхода и углу охвата.

Недостатком данного рабочего колеса являются высокие вихревые потери и, как следствие, узкая рабочая зона по подаче, за пределами которой КПД принимает низкие значения.

Наиболее близким по технической сущности к изобретению является реактивное рабочее колесо центробежного насоса (см. патент на изобретение RU 2613545, МПК F04D 29/22, опубл. 17.03.2017 г.), содержащее равномерно распределенные по окружности колеса лопасти с идентичными скелетами профилей, образующие между собой каналы с горлом, каналы образованы так, что средние их линии есть геометрическое место точек - центров окружностей с диаметрами Di, вписанных между скелетами соседних профилей на различных радиусах колеса, а внешние обводы каналов образованы кривыми, касательными к окружностям с диаметрами di, меньшими диаметров Di, концентричным окружностям, вписанным между скелетами профилей, причем диаметры di на любом i-м радиусе рабочего колеса определяются зависимостью di=(D1-s)⋅k+(Di-s)⋅(1-k), где Dl есть диаметр Di в горле канала, s есть толщина входной кромки профиля лопасти, а константа k идентична для всех каналов колеса и имеет значение в диапазоне от 0,3 до 0,5.

Недостатками известного технического решения являются повышенные энергетические потери, надкавитационный напор NPSH3 центробежного насоса и низкая производительность.

Технической задачей изобретения является улучшение энергетических и кавитационных характеристик центробежного насоса.

Техническим результатом изобретения является повышение КПД, пониженная потребляемая мощность и надкавитационный напор.

Поставленная техническая задача решается тем, что в известном рабочем колесе центробежного насоса, содержащем равномерно распределенные по окружности лопасти с идентичными скелетами профилей, входными и выходными кромками, рабочими поверхностями, образующими межлопастные каналы с площадью проходного сечения Fк и длиной Lк, на рабочих поверхностях лопастей с толщиной bл выполнены полуцилиндрические вырезы радиусом rвыр, которые расположены с отступом L0 от входной кромки и интервалом Δ по всей длине Lк межлопастного канала, при этом толщина лопастей bл, радиус вырезов rвыр, отступ L0 от входной кромки и интервал Δ между ними выбраны из условий rвыр=0,4bл, L0=0,25LK и Δ=4rвыр соответственно, где Q - расход жидкости, ω - угловая скорость вращения рабочего колеса, β' - угол лопасти в каждой точке рабочей поверхности лопасти, расположенной от оси вращения на расстоянии R, Vu - кинематический параметр, определенный из условия Н - напор насоса, а k - константа.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан пример рабочего колеса на виде спереди, на фиг. 2 представлен пример рабочего колеса в изометрии, на фиг. 3 приведена иллюстрация к принципу действия эффекта Магнуса в рабочем колесе, на фиг. 4 представлен выносной вид к иллюстрации принципа действия эффекта Магнуса в рабочем колесе, содержащий фрагмент лопасти с полуцилиндрическим вырезом.

Рабочее колесо центробежного насоса, содержит равномерно распределенные по окружности лопасти 1 толщиной bл и с идентичными скелетами профилей 2, лопасти 1 имеют входные кромки 3, расположенные на расстоянии Rвх от оси вращения, выходные кромки 4, расположенные на расстоянии Rвых от оси вращения, рабочие поверхности 5, образующие межлопастные каналы 6 с площадью проходного сечения Fк и длиной Lк, и полуцилиндрические вырезы 7 радиусом rвыр=0,4bл, расположенные с отступом от L0=0,25Lк от входной кромки 3 и интервалом Δ=4rвыр по всей длине Lк межлопастного канала 6, создающие локальные вихри 8.

Рабочее колесо центробежного насоса работает следующим образом.

При вращении рабочего колеса в полуцилиндрических вырезах 7 формируются локальные вихри 8, приведенные на иллюстрациях к принципу действия эффекта Магнуса, полученных по результатам численного моделирования течения в рабочем колесе. При обтекании вихрей 8 потоком возникает подъемная сила Fм, обусловленная эффектом Магнуса, согласно которому при обтекании вращающегося тела возникает поперечная сила, направленная от той стороны вращающегося тела, на которой направление вращения и направление потока противоположны, к той стороне, на которой эти направления совпадают. Сила Fм создает момент Мм имеющий направление противоположное моменту сопротивления Мс, согласно (1) представляющему сумму гидравлического момента на лопастях 1 рабочего колеса Мг, момента сопротивления в подшипниках Мп и момента сопротивления в уплотнениях Му. Таким образом крутящий момент Мкр на валу колеса с полуцилиндрическими вырезами 7 в лопастях 1, определяемый уравнением (2), оказывается сниженным на величину Мм по сравнению с аналогичным колесом без полуцилиндрических вырезов 7.

Поскольку локальные вихри 8 остаются на периферии и практически не затрагивают ядро потока, гидравлические потери и напор Н практически не отличаются у насоса с полуцилиндрическими вырезами 7 в лопастях 1 рабочего колеса и без них.

Как можно увидеть из уравнений (3) и (4), отражающих зависимость потребляемой мощности Nзатр и КПД η от Мм, Nзатр в центробежном насосе с лопастями 1 с полуцилиндрическими вырезами 7 оказывается ниже, а КПД η, чем в центробежном насосе с аналогичным колесом без полуцилиндрических вырезов 7.

где ω - угловая скорость вращения рабочего колеса.

где ρ - плотность перекачиваемой насосом жидкости;

g - ускорение свободного падения.

Величина полуцилиндрических вырезов 7 при этом определена из условия rвыр=0,4bл обеспечения требуемых прочностных характеристик лопастей 1 при максимальном моменте Мм, а отступ L0 от входной кромки 3 и интервал Δ расположения вырезов 7 из условий L0=0,25Lк и Δ=4rвыр стабилизации потока в межлопастных каналах 6 за входной кромкой 3 и локальными вихрями 8, расположенными в каждом из вырезов 7.

Толщина bл лопастей 1 выбрана из условия (5) обеспечения напора Н при перекачивании жидкости с расходом Q и угловой скоростью вращения ω при минимальных затратах энергии на привод насоса. При этом при обтекании лопастей 1 имеют место снижение надкавитационного напора NPSH3 и повышение КПД η.

где β' - угол лопасти в каждой точке рабочей поверхности 5 лопасти 1, расположенной от оси вращения на расстоянии R;

- кинематический параметр;

k - константа.

Использование изобретения позволяет улучшить энергетические и кавитационные характеристики центробежного насоса при этом имеет место повышение КПД, снижение потребляемой мощности и надкавитационного напора.

Похожие патенты RU2727275C1

название год авторы номер документа
Реактивное рабочее колесо центробежного насоса 2015
  • Волков Александр Викторович
  • Парыгин Александр Гаврилович
  • Лукин Максим Васильевич
  • Рыженков Артем Вячеславович
  • Вихлянцев Александр Андреевич
RU2613545C1
РАБОЧЕЕ КОЛЕСО ЦЕНТРОБЕЖНОГО НАСОСА 2016
  • Парыгин Александр Гаврилович
  • Волков Александр Викторович
  • Рыженков Артем Вячеславович
  • Наумов Андрей Вадимович
  • Вихлянцев Александр Андреевич
RU2611122C1
Рабочее колесо центробежного питательного насоса напорного ящика 2015
  • Маннинен Хейкки
  • Весала Рейо
RU2655083C1
Рабочее колесо свободновихревого насоса 1987
  • Герман Виктор Федорович
  • Яхненко Сергей Михайлович
  • Синеколодецкая Татьяна Николаевна
  • Котенко Александр Иванович
  • Копелянский Владимир Борисович
  • Гонсалес Лопес Хуан
SU1521923A1
СПОСОБ ОПТИМИЗАЦИИ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ПРОТОЧНЫХ КАНАЛОВ СТУПЕНЕЙ ПОГРУЖНОГО МАЛОДЕБИТНОГО ЦЕНТРОБЕЖНОГО НАСОСА 2011
  • Наконечный Александр Иосифович
  • Калан Валерий Александрович
  • Мисюрко Василий Михайлович
  • Петров Владимир Иванович
  • Тузов Владимир Юрьевич
RU2472973C1
Ступень многоступенчатого лопастного насоса 2020
  • Стасюк Игорь Олегович
  • Стасюк Александр Олегович
  • Наконечный Александр Иосифович
RU2735978C1
ЛОПАТОЧНЫЙ АППАРАТ РАБОЧЕГО КОЛЕСА РАДИАЛЬНО-ОСЕВОЙ ГИДРОТУРБИНЫ 2009
  • Сотников Анатолий Александрович
  • Пылев Игорь Михайлович
  • Демьянов Владимир Александрович
  • Степанов Валентин Николаевич
  • Ригин Валерий Евгеньевич
RU2422670C1
Способ повышения давления и экономичности центробежного насоса и устройство для его реализации 2021
  • Чураков Евгений Олегович
  • Макаров Владимир Николаевич
  • Молчанов Максим Владимирович
  • Арсланов Азамат Альфизович
  • Макаров Николай Владимирович
RU2775101C1
Рабочее колесо центробежной турбомашины 1988
  • Синенко Александр Юрьевич
  • Смирнов Владимир Степанович
SU1528964A1
МНОГОСТУПЕНЧАТЫЙ ЦЕНТРОБЕЖНЫЙ НАСОС 1998
  • Кулигин А.Б.
  • Трулев А.В.
RU2150028C1

Иллюстрации к изобретению RU 2 727 275 C1

Реферат патента 2020 года Рабочее колесо центробежного насоса

Изобретение относится к области машиностроения и может быть использовано в центробежных насосах. Рабочее колесо содержит равномерно распределенные по окружности лопасти (1) толщиной bл и с идентичными скелетами профилей (2). Входные кромки (3) лопастей (1) расположены на расстоянии Rвх от оси вращения, а выходные кромки (4) - на расстоянии Rвых от оси вращения. Рабочие поверхности (5) образуют межлопастные каналы (6) длиной Lк. На поверхностях (5) выполнены полуцилиндрические вырезы (7) радиусом rвыр=0,4bл, расположенные с отступом от L0=0,25Lк от входной кромки (3) и интервалом Δ=4rвыр по всей длине Lк межлопастного канала (6). Размеры отступа L0 и интервала Δ зависят от расхода, угловой скорости вращения, угла лопасти и напора насоса. Изобретение направлено на улучшение энергетических и кавитационных характеристик центробежного насоса, при этом имеет место повышение КПД, снижение потребляемой мощности и надкавитационного напора. 4 ил.

Формула изобретения RU 2 727 275 C1

Рабочее колесо центробежного насоса, содержащее равномерно распределенные по окружности лопасти с идентичными скелетами профилей, входными кромками, выходными кромками, расположенными на расстоянии Rвых от оси вращения, рабочими поверхностями, образующими межлопастные каналы с площадью проходного сечения FK и длиной LK, отличающееся тем, что на рабочих поверхностях лопастей толщиной bЛ выполнены полуцилиндрические вырезы радиусом rвыр, которые расположены с отступом L0 от входной кромки и интервалом Δ по всей длине LK межлопастного канала, при этом толщина лопастей bЛ, радиус вырезов rвыр, отступ L0 от входной кромки и интервал Δ между ними выбраны из условий rвыр=0,4bЛ, L0=0,25LK и Δ=4rвыр соответственно, где Q - расход жидкости, ω - угловая скорость вращения рабочего колеса, β' - угол лопасти в каждой точке рабочей поверхности лопасти, расположенной от оси вращения на расстоянии R, Vu - кинематический параметр, определенный из условия Н - напор насоса, а k - константа.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727275C1

Реактивное рабочее колесо центробежного насоса 2015
  • Волков Александр Викторович
  • Парыгин Александр Гаврилович
  • Лукин Максим Васильевич
  • Рыженков Артем Вячеславович
  • Вихлянцев Александр Андреевич
RU2613545C1
ЦЕНТРОБЕЖНЫЙ НАСОС 2017
  • Криштафович Алексей Юрьевич
RU2651911C1
ЦЕНТРОБЕЖНЫЙ НАСОС 2017
  • Криштафович Алексей Юрьевич
RU2651912C1
US 20180128281 A1, 10.05.2018
US 20170218979 A1, 03.08.2017.

RU 2 727 275 C1

Авторы

Волков Александр Викторович

Дружинин Алексей Анатольевич

Вихлянцев Александр Андреевич

Даты

2020-07-21Публикация

2019-10-30Подача