СПОСОБ УЧЕТА ВЕТРА ПРИ ПРИМЕНЕНИИ АВИАЦИОННЫХ БОМБ Российский патент 2020 года по МПК F41G3/22 

Описание патента на изобретение RU2727280C1

Изобретение относится к области баллистического обеспечения применения авиационных бомб и может быть использовано при разработке новых и модернизации существующих авиационных прицельных систем летательных аппаратов.

Известен способ учета ветра в авиационных прицельных системах, заключающийся в том, что ветер, измеренный на высоте полета (пуска, сброса), принимают постоянным на всей траектории движения авиационной бомбы [см., например, Авиационные прицельно-навигационные системы. Под ред. А.М. Краснова. Издание ВВИА им. проф. Н.Е. Жуковского, 2006 г., стр. 81].

Недостатком данного способа низкая точность применения авиационных бомб, что обусловлено нестационарностью ветра по высотам.

Наиболее близким по сущности к заявляемому изобретению является способ, при котором измеряют скорость ветра на высоте полета летательного аппарата и вычисляют «среднюю скорость ветра» как средневзвешенное по высоте значение скорости ветра. Известно устройство, в котором реализован указанный способ [см. патент Российской Федерации №2407977, МПК 41G 3/22, по заявке 2010111592/02 от 25.03.2010 г., опубл. 27.12.2010 г., авторы Бабиченко А.В., Бражник В.М. и др. - Комплексная прицельная система летательного аппарата].

Недостатком данного способа является низкая точность определения прицельных параметров (положения прицельной марки), обусловленная индивидуальными аэробаллистическими характеристиками бомб, особенно авиационных бомб с тормозными устройствами (АБ с ТУ).

Техническим результатом изобретения является повышение точности применения АБ с ТУ за счет определения индивидуальной ветровой функции (ИВФ) и уточнения на ее основе прицельных параметров применения (положения прицельной марки).

Технический результат достигается тем, что в известном способе учета ветра при применении авиационных бомб, включающем измерение скорости ветра на высоте сброса, расчет средней скорости ветра и определение с ее использованием прицельных параметров применения, дополнительно определяют тип бомбы, и при условии применения АБ с ТУ рассчитывают индивидуальную ветровую функцию, на основе которой уточняют прицельные параметры бомбометания (положение прицельной марки) с учетом индивидуальных характеристик применяемой АБ с ТУ

Сущность изобретения заключается в том, что дополнительно определяют тип бомбы, и при условии применения АБ с ТУ рассчитывают индивидуальную ветровую функцию, на основе которой уточняют прицельные параметры бомбометания (положение прицельной марки).

Известно, что на точность применения АБ с ТУ существенное влияние оказывает нестационарность ветра по высотам и индивидуальные аэробаллистические характеристики АБ с ТУ [Лебедев В.В., Моисеев С.Н., Филиппов А.В. Анализ влияния ветровой функции реальной атмосферы на траекторию движения объекта со сложной баллистикой // Сборник статей по материалам II Всероссийской научно-практической конференции «Калибр», 2018, с. 242-248]. Согласно изобретению, при применении АБ с ТУ рассчитывают ИВФ, используя профилирующую зависимость, учитывающую индивидуальные аэробаллистические характеристики применяемой АБ с ТУ, а также прогнозируемую ветровую функцию в зависимости от района и времени применения. Прогнозируемую ветровую функцию уточняют на величину скорости ветра, измеренного на высоте полета. Используя профилирующую зависимость и уточненную прогнозируемую ветровую функцию рассчитывают ИВФ АБ с ТУ, на основе которой уточняют прицельные параметры применения. Этим достигается указанный в изобретении технический результат.

Способ учета ветра при применении АБ с ТУ может быть реализован, например, в авиационной прицельной системе, структурная схема которой приведена на чертеже, где обозначено: 1 - блок предварительной обработки, 2 - блок вычисления средней скорости ветра, 3 - дешифратор, 4 - база данных профилирующих зависимостей, 5 - база данных прогнозируемых ветровых функций, 6 - ключевая схема, 7 - блок вычисления индивидуальной ветровой функции.

База данных профилирующих зависимостей 4 предназначена для хранения профилирующих зависимостей АБ с ТУ и может быть реализована в известных бортовых алгоритмах цифровых вычислительных машин авиационных прицельных систем летательных аппаратов. Профилирующие зависимости для каждого i-того типа АБ с ТУ могут быть заранее определены следующим образом.

Производят определение параметров траектории движения i-того типа АБ с ТУ (i=1…n). Рассчитывают два типа траекторий:

- при отсутствии ветрового воздействия (эталонная траектория) -

- при воздействии ветра с постоянным направлением и скоростью на всем срезе высот (расчетная траектория) -

Производится сравнение продольных координат ветровой и штилевых траектории на одинаковых высотах:

где hj - высота j-того слоя атмосферы (j=1…m).

Определяется изменение разности продольных координат на соседних высотных слоях (hj, hj-1):

ΔXi(h)=ΔXi(hj)-ΔXi(hj-1),

где hj<hj-1.

Определяется отклик траектории АБ с ТУ на ветровое воздействие:

Профилирующая зависимость представляет собой соотношение вида:

где hmax - максимальная высота применения конкретного типа АБ с ТУ.

База данных прогнозируемых ветровых функций 5 предназначена для хранения прогнозируемых средних ветровых функций и может быть реализована в виде таблиц значений скорости ветра по высотам V(h) в зависимости от района и времени применения, на основе данных, приведенных в [см., например, ГОСТ 24728-81 Ветер. Пространственное и временное распределение характеристик, ГОСТ Р 53460-2009 Глобальная справочная атмосфера для высот от 0 до 120 км для аэрокосмической практики. Параметры].

Ключевая схема 6 открывает линию вычисления индивидуальной ветровой функции при условии применения АБ с ТУ и может быть реализована на основе однопорогового компаратора [см., например, А.Г. Алексеенко. Применение прецизионных аналоговых ИС. А.Г. Алексеенко, Г.А. Коломбет, Г.И. Стародуб. - М. Радио и связь, 1981. - с. 169].

Назначение блока вычисления индивидуальной ветровой функции 7 ясно из его названия. Блок может быть выполнен на основе однопроцессорного вычислителя [см., например, Л.Н. Преснухин, П.В. Нестеров. Цифровые вычислительные машины. М.: Высшая школа, 1981. - с. 31], и может функционировать по следующему алгоритму.

По значению скорости ветра U(hизм), измеренному на высоте полета ЛА определяется профилирующий коэффициент:

kU=U(hизм)/V(hизм),

где V(hизм) - значение прогнозируемой ветровой функции на высоте полета ЛА.

Выполняется уточнение прогнозируемой ветровой функции во всем разрезе высоты сброса:

Ucp(h)=kU*V(h).

Определяется индивидуальная ветровая функция применяемой АБ с ТУ:

UИВФ(h)=Uср(h)*Мi(h).

Построенная по такому принципу авиационная прицельная система функционирует следующим образом. При применении АБ с ТУ, ключевая схема 6 открывает линию вычисления индивидуальной ветровой функции. Из базы данных профилирующих зависимостей 4 выбирается зависимость, соответствующая конкретной АБ с ТУ, которая поступает на 1 вход блока вычисления индивидуальной ветровой функции 7. Из базы данных прогнозируемых ветровых функций 5 по информации от навигационной системы в зависимости от района и времени применения выбирается зависимость V(h), которая поступает на 2 вход блока вычисления индивидуальной ветровой функции 7. На 3 вход блока вычисления индивидуальной ветровой функции 7 из навигационной системы поступает значение скорости ветра U(hизм), измеренного на высоте полета летательного аппарата. Вычисляется индивидуальная ветровая функция АБ с ТУ, которая поступает на вход баллистического вычислителя для расчета конечных элементов траектории движения АБ с ТУ и уточнения прицельных параметров применения, индицируемых экипажу ЛА блоком индикации в виде прицельной марки.

Похожие патенты RU2727280C1

название год авторы номер документа
АВИАЦИОННАЯ БОМБА С КОРРЕКТИРУЕМЫМИ АЭРОДИНАМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ 2003
  • Назаров С.П.
  • Писковацкий А.А.
  • Сизых В.Н.
  • Чернов В.Ф.
RU2265792C2
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ СБРОСЕ ГРУЗОВ В НАБЛЮДАЕМУЮ ТОЧКУ ЗЕМНОЙ ПОВЕРХНОСТИ С МАНЕВРИРУЮЩЕГО ЛЕТАТЕЛЬНОГО АППАРАТА 2001
  • Мамошин В.Р.
RU2199074C1
Способ управления планирующей авиабомбой при ветре 2018
  • Кузнецов Николай Сергеевич
RU2681749C1
Способ управления планирующей авиабомбой 2018
  • Кузнецов Николай Сергеевич
RU2676775C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ПАРАМЕТРОВ ТРАЕКТОРИИ БОМБЫ 2002
  • Григорьев В.Г.
  • Григорьев Д.В.
  • Григорьев В.В.
RU2212620C1
КОМБИНИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ КОРРЕКТИРУЕМОЙ АВИАЦИОННОЙ БОМБОЙ 2011
  • Замыслов Михаил Александрович
  • Михайленко Сергей Борисович
  • Волобуев Михаил Федорович
  • Демчук Валерий Анатольевич
  • Акиньшина Галина Николаевна
RU2489675C2
СПОСОБ ПРИЦЕЛИВАНИЯ С МАНЕВРИРУЮЩЕГО ЛЕТАТЕЛЬНОГО АППАРАТА 2010
  • Айвазян Сергей Альбертович
  • Богданов Юрий Владимирович
  • Моисеев Анатолий Георгиевич
RU2453793C2
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ БОМБОМЕТАНИИ 2001
  • Николаев Р.П.
  • Григорьев Д.В.
  • Весельев А.Д.
  • Григорьев В.Г.
  • Григорьев В.В.
RU2204106C2
СИСТЕМА УПРАВЛЕНИЯ КОРРЕКТИРУЕМОЙ АВИАЦИОННОЙ БОМБОЙ, ПРЕДНАЗНАЧЕННОЙ ДЛЯ ПОРАЖЕНИЯ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ ПРОТИВНИКА 2011
  • Акиньшина Галина Николаевна
  • Волобуев Михаил Федорович
  • Демчук Валерий Анатольевич
  • Замыслов Михаил Александрович
  • Михайленко Сергей Борисович
RU2488769C2
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ СБРОСЕ ГРУЗОВ В ТОЧКУ ЗЕМНОЙ ПОВЕРХНОСТИ С МАНЕВРИРУЮЩЕГО ЛЕТАТЕЛЬНОГО АППАРАТА 2006
  • Айвазян Сергей Альбертович
  • Богданов Юрий Владимирович
  • Зеленов Андрей Евгеньевич
  • Коротков Сергей Сергеевич
  • Куклин Алексей Викторович
  • Лемещенко Николай Александрович
  • Моисеев Анатолий Георгиевич
  • Шиян Вячеслав Данилович
RU2295104C1

Иллюстрации к изобретению RU 2 727 280 C1

Реферат патента 2020 года СПОСОБ УЧЕТА ВЕТРА ПРИ ПРИМЕНЕНИИ АВИАЦИОННЫХ БОМБ

Изобретение относится к области баллистического обеспечения применения авиационных бомб и может быть использовано при разработке новых и модернизации существующих авиационных прицельных систем летательных аппаратов. Для учета ветра при применении авиационных бомб скорость ветра измеряют на высоте сброса, рассчитывают среднюю скорость ветра и определяют с ее использованием прицельные параметры применения. Дополнительно определяют тип бомбы и при условии применения авиационной бомбы с тормозным устройством рассчитывают индивидуальную ветровую функцию, на основе которой уточняют прицельные параметры бомбометания с учетом индивидуальных характеристик применяемой авиационной бомбы с тормозным устройством. Обеспечивается повышение точности применения авиационной бомбы с тормозным устройством за счет определения индивидуальной ветровой функции и уточнения на ее основе прицельных параметров применения - положения прицельной марки. 1 ил.

Формула изобретения RU 2 727 280 C1

Способ учета ветра при применении авиационных бомб, включающий измерение скорости ветра на высоте сброса, расчет средней скорости ветра и определение с ее использованием прицельных параметров применения, отличающийся тем, что дополнительно определяют тип бомбы и при условии применения авиационной бомбы с тормозным устройством рассчитывают индивидуальную ветровую функцию, на основе которой уточняют прицельные параметры бомбометания с учетом индивидуальных характеристик применяемой авиационной бомбы с тормозным устройством.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727280C1

Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ СБРОСЕ ГРУЗОВ В НАБЛЮДАЕМУЮ ТОЧКУ ЗЕМНОЙ ПОВЕРХНОСТИ С МАНЕВРИРУЮЩЕГО ЛЕТАТЕЛЬНОГО АППАРАТА 2001
  • Мамошин В.Р.
RU2199074C1
СПОСОБ ПРИЦЕЛИВАНИЯ ПРИ БОМБОМЕТАНИИ 2001
  • Николаев Р.П.
  • Григорьев Д.В.
  • Весельев А.Д.
  • Григорьев В.Г.
  • Григорьев В.В.
RU2204106C2
US 4086841

RU 2 727 280 C1

Авторы

Филиппов Андрей Владимирович

Лебедев Вадим Владимирович

Даты

2020-07-21Публикация

2019-04-08Подача