Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления Российский патент 2020 года по МПК F17D5/00 

Описание патента на изобретение RU2727732C1

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию.

Внутритрубная послестроительная диагностика обеспечивает обнаружение дефектов на участке трубопровода, уложенного в траншею и засыпанного грунтом.

Известно, что движение внутритрубных инспекционных приборов (ВИЛ) в полости трубопровода достигается сжатым воздухом (Основы технической диагностики трубопроводных систем нефти и газа: учебник для вузов / A.M. Шаммазов, Б.Н. Мастобаев, А.Е. Сощенко, Г.Е. Коробков, В.М. Писаревский. - СПб.: Недра, 2009. - С. 388-398).

Наиболее близким к заявленному устройству по совокупности существенных признаков и достигаемому техническому результату является устройство, представляющее собой внутритрубный инспекционный прибор (ВИЛ) (Основы технической диагностики трубопроводных систем нефти и газа: учебник для вузов / A.M. Шаммазов, Б.Н. Мастобаев, А.Е. Сощенко, Г.Е. Коробков, В.М. Писаревский. - СПб.: Недра, 2009. - С. 389-390).

Недостатком данного устройства является возгорание его элементов в среде сжатого воздуха в процессе проведения внутритрубной диагностики. В процессе движения ВИП в полости трубопровода вследствие трения его о внутреннюю поверхность трубы происходит повышенный нагрев ВИП, а иногда возгорание элементов ВИП в среде сжатого воздуха. В результате чего ВИП теряет работоспособность.

Задачей изобретения является разработка нового способа послестроительной диагностики трубопровода и устройства для его осуществления с достижением следующего технического результата - исключение возгорания ВИП в процессе послестроительной диагностики трубопровода.

Поставленная задача решается тем, что в способе внутритрубной послестроительной диагностики трубопровода, включающем применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, согласно изобретению обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии причем значения давлений в этих полостях р1.1 и p2.1 превышают значения давлений прилегающих участков р1 и р2. Расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках. В устройстве для внутритрубной послестроительной диагностики трубопровода, содержащем внутритрубный инспекционный прибор, согласно изобретению, внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов. Поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м. Причем внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир.

Предлагаемое изобретение иллюстрируется чертежами.

На фиг. 1 представлено устройство внутритрубной послестроительной диагностики трубопровода; на фиг. 2 - осуществление способа внутритрубной послестроительной диагностики на прямолинейном участке трубопровода; на фиг. 3 - осуществление способа внутритрубной послестроительной диагностики на углах поворота трубопровода; на фиг. 4 - устройство внутритрубной послестроительной диагностики трубопровода с секционным выполнением поршней.

Устройство внутритрубной послестроительной диагностики трубопровода содержит внутритрубный инспекционный прибор 1 (ВИП), встроенный баллон 2 со сжатым инертными газом, поршни 3, соединительные элементы 4, шаровой шарнир 5, а также короткие соединительные элементы 6 (в пределах 0,5-1,0 м из технических соображений) для варианта секционного выполнения поршней 3.

Полость трубопровода 7 спереди и сзади движущегося ВИП 1 на определенном участке полости заполняется инертным газом. Этот участок полости ограничен поршнями 3, которые механически соединены с ВИП 1 без возможности изменения расстояния между ними. С целью обеспечения относительных угловых перемещений поршней 3 и ВИП 1 на участках изгиба трубопровода их соединения выполнены через шаровой шарнир 5. Таким образом, ВИП 1 в процессе движения находится в среде инертного газа, что исключает возгорание.

Длина соединительного элемента 4 определяется так, чтобы на углах поворота трубопровода 7 оставался зазор между жестким соединительным элементом 4 и внутренней поверхностью трубопровода 7, что позволит беспрепятственное движение устройства в полости трубопровода на участках изгиба трубопровода. Следовательно, расстояние между внутритрубным инспекционным прибором 1 и поршнями 3 также принимают из условия обеспечения зазора между соединительным элементом 4 и внутренней поверхностью трубопровода 7 на криволинейных его участках (из технических соображений):

где D - внутренний диаметр трубопровода (м), R - радиус кривизны продольной оси трубопровода (м).

Условие обеспечения движения системы с точки зрения соотношения давлений имеет вид:

где р1 - значение давления сжатого воздуха в прилегающем участке трубопровода до устройства, р2 - значение атмосферного давления в прилегающем участке трубопровода после устройства.

Условия исключения попадания воздуха из прилегающих участков в полости с ВИП имеют вид:

где p1.1 и р2.1 - значения давлений в полостях с ВИП, ограниченных поршнями.

Условие (2) можно записать в виде:

где N1=0,25πD2p1 - усилие, действующие на поршень 3, от давления сжатого воздуха;

N2=0,25πD2p2 - усилие, действующее на поршень 3, от атмосферного давления в противоположном направлении движения устройства;

T=Т1п1п2 - усилие сопротивления движению устройства.

Здесь Т1, Тп1, Тп2 - усилия сопротивления движению, соответственно, ВИП 1 и поршней 3 по ходу движения.

До пропуска ВИП 1 производится предпусковая подготовка полости трубопровода 7 с целью обеспечения целостности ВИП 1 и других приборов, пропускаемых по трубопроводу 7. Несмотря на это возможен износ поршней 3 и повышенная утечка инертного газа в соседние полости. С целью обеспечения условий (3) в течение всего процесса диагностирования ВИП 1 оснащено баллоном 2, наполненным сжатым инертным газом. По ходу движения ВИП 1 инертный газ выпускается из баллона 2 в полость трубопровода, ограниченную поршнями 3. Кроме того, с целью достижения поставленной задачи поршни 3 могут быть изготовлены из нескольких секций.

Устройство работает следующим образом. При внутритрубной послестроительной диагностике ВИП 1 с поршнями 3 приводится в движение в полости трубопровода 7 под действием сжатого до давления р1 воздуха. Полости трубопровода между ВИП 1 и поршнями 3 заполняются под давлением инертным газом с соблюдением условий (2) и (3). С целью обеспечения условий (2) и (3) в процессе диагностики всего участка трубопровода 7 поршни 3 могут быть выполнены секционными, а также ВИП 1 может быть оснащен баллоном 2 со сжатым инертным газом. Секции в поршнях соединяются между собой короткими соединительными элементами 6 через шаровой шарнир 5. Секционное выполнение поршней 3 существенно снижает утечку инертного газа из полостей между ВИП 1 и поршнями 3. Сжатый инертный газ из баллона 2 по ходу движения приборов при необходимости поступает в полости трубопровода 7 между ВИП 1 и поршнями 3, тем самым обеспечивает соблюдение условий (2) и (3).

По ходу движения ВИП нагревается. Так как ВИП находится в среде инертного газа, возгорание его из-за повышенного нагрева не происходит.

Похожие патенты RU2727732C1

название год авторы номер документа
Способ проведения внутритрубной диагностики в подвижной жидкостной пробке 2017
  • Кулешов Андрей Николаевич
  • Гусаров Игорь Сергеевич
  • Варламов Сергей Владимирович
  • Алаев Андрей Анатольевич
  • Строков Герман Германович
RU2650621C1
СПОСОБ ИСПЫТАНИЯ ВНУТРИТРУБНОГО ИНСПЕКЦИОННОГО ПРИБОРА НА КОЛЬЦЕВОМ ТРУБОПРОВОДНОМ ПОЛИГОНЕ 2012
  • Ермолаев Александр Александрович
RU2526579C2
Способ определения точного объема вынесенного металла коррозионных дефектов по ультразвуковым данным ВТД 2015
  • Ивашкин Роман Георгиевич
  • Поротиков Денис Олегович
  • Сафаров Эльдар Фяритович
  • Домненков Александр Шотович
RU2607359C1
Способ обработки результатов внутритрубных диагностических обследований магистральных трубопроводов, выполненных комбинированными методами неразрушающего контроля с учетом конструктивных характеристик внутритрубного инспекционного прибора (ВИП), скорости движения и изменения углового положения ВИП 2015
  • Ивашкин Роман Георгиевич
  • Поротиков Денис Олегович
  • Вагнер Иван Анатольевич
  • Ахадов Роман Владимирович
  • Губанкова Елена Владимировна
  • Дорогов Михаил Евгеньевич
  • Дубко Олег Сергеевич
  • Прихоженко Артем Владимирович
  • Ройтбурд Эдуард Леонидович
RU2639466C2
Метрологический полигон 2016
  • Ревель-Муроз Павел Александрович
  • Кацал Игорь Николаевич
  • Воронов Александр Геннадьевич
  • Естин Михаил Петрович
  • Идрисов Алмаз Махмутович
  • Лисин Юрий Викторович
  • Аралов Олег Васильевич
  • Воробьев Сергей Игоревич
  • Маракаев Руслан Искакович
  • Кулешов Андрей Владимирович
RU2641618C1
Способ выявления растущих дефектов магистральных трубопроводов 2020
  • Юрьев Владимир Васильевич
  • Степанов Николай Олегович
RU2753108C2
Способ преобразования диагностических данных внутритрубных обследований магистральных трубопроводов, работающих в реверсном режиме в вид, позволяющий проводить интерпретацию с использованием данных предыдущих инспекций, проведенных при работе нефтепровода в прямом режиме 2015
  • Ивашкин Роман Георгиевич
  • Поротиков Денис Олегович
  • Вагнер Иван Анатольевич
RU2617612C1
ТРУБОПРОВОДНЫЙ СКРЕБОК РАССЕИВАНИЯ ИНГИБИТОРОВ С ВИХРЕВЫМ ЭФФЕКТОМ 2009
  • Прутт Рик Ди.
RU2509613C2
Способ изготовления фланцевой вставки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне 2016
  • Дегтев Валерий Порфирьевич
  • Кулешов Андрей Владимирович
  • Крюков Алексей Анатольевич
RU2625985C1
СПОСОБ ВНУТРИТРУБНОЙ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТРУБОПРОВОДА 2018
  • Елисеев Александр Алексеевич
  • Семенов Владимир Всеволодович
  • Фогель Андрей Дмитриевич
  • Баталов Лев Алексеевич
  • Афанасович Алексей Петрович
  • Грехов Александр Викторович
  • Бацалев Александр Игоревич
  • Галеев Айрат Габдуллович
RU2697008C1

Иллюстрации к изобретению RU 2 727 732 C1

Реферат патента 2020 года Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии l, причем значения давлений в этих полостях p1.1 и р2.1 превышают значения давлений прилегающих участков p1 и р2. Расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках. В устройстве для внутритрубной послестроительной диагностики трубопровода, содержащем внутритрубный инспекционный прибор, внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов. Поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м. Причем внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир. Изобретение обеспечивает исключение возгорания в процессе послестроительной диагностирования трубопровода. 2 н. и 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 727 732 C1

1. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, отличающийся тем, что обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии причем значения давлений в этих полостях p1.1 и p2.1 превышают значения давлений прилегающих участков р1 и p2.

2. Способ по п. 1, отличающийся тем, что расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках:

где D - внутренний диаметр трубопровода, м,

R - радиус кривизны продольной оси трубопровода, м.

3. Устройство для внутритрубной послестроительной диагностики трубопровода, содержащее внутритрубный инспекционный прибор, отличающееся тем, что внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов.

4. Устройство по п. 3, отличающееся тем, что поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м.

5. Устройство по п. 3, отличающееся тем, что внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727732C1

Шаммазов А.М
и др
Основы технической диагностики трубопроводных систем нефти и газа: учебник для ВУЗов, СПб, Недра, 2000, с.389-390
Способ внутритрубной диагностики трубопроводов с использованием метода "сухой протяжки" 2017
  • Кулешов Андрей Николаевич
  • Гусаров Игорь Сергеевич
  • Строков Герман Германович
  • Буданов Николай Николаевич
RU2658122C1
Способ проведения внутритрубной диагностики в подвижной жидкостной пробке 2017
  • Кулешов Андрей Николаевич
  • Гусаров Игорь Сергеевич
  • Варламов Сергей Владимирович
  • Алаев Андрей Анатольевич
  • Строков Герман Германович
RU2650621C1
US 3047895 A, 07.08.1962
WO 9965620 A1, 23.12.1999.

RU 2 727 732 C1

Авторы

Азметов Хасан Ахметзиевич

Кожаева Ксения Валерьевна

Хасанов Рустям Рафикович

Павлова Зухра Хасановна

Гурницкая Елена Юрьевна

Даты

2020-07-23Публикация

2019-12-04Подача