Способ прогнозирования интенсивности отказов трубопровода Российский патент 2020 года по МПК F17D5/00 

Описание патента на изобретение RU2730541C1

Изобретение относится к области измерительной техники, к испытаниям, диагностике и эксплуатации трубопроводов, а конкретно к способам прогнозирования интенсивности отказов протяженного трубопровода в зависимости от скорости внутренней коррозии без обследования трубопровода.

Известен способ определения остаточного ресурса металла магистрального газопровода [патент на изобретение RU 2391601 С2, опубл. 27.01.2010, МПК F17D 5/00], заключающийся в том, что вырезают не менее трех пластин металла газопровода, например, из труб аварийного запаса. Одну пластину используют в качестве эталонного образца, а другие устанавливают внутрь магистрального газопровода в местах, доступных для периодического доступа. При проведении планово-предупредительного ремонта извлекают одну из пластин, снимают с ее поверхности, обращенной внутрь газопровода, слой толщиной 0,1-0,12 от толщины пластины и проводят анализ распределения концентрации атомов водорода по толщине в эталонном и полученном элементе извлеченной пластины с определением коэффициента диффузии атомов водорода. При следующем ремонте исследованную пластину возвращают внутрь трубы газопровода, а другую пластину извлекают и аналогичным образом исследуют. Далее определяют зависимость изменения концентрации атомов водорода по толщине пластин от момента начала эксплуатации газопровода, прочностные параметры материала трубы газопровода и на основании полученных результатов определяют остаточный ресурс материала трубопровода.

Недостатком известного способа, который, в принципе, применим для прогнозирования интенсивности отказов трубопровода, является то, что оценка остаточного ресурса газопровода проводится по изменению концентрации водорода, которая влияет, в первую очередь, на остаточный ресурс газопровода при развитии стресс-коррозии, что снижает точность оценки остаточного ресурса металла магистрального трубопровода.

Их уровня техники известен также способ определения остаточного ресурса технических объектов [патент на изобретение RU 2502974 С1, опубл. 27.12.2013, G01M 15/00]. Способ включает испытание, как минимум, двух объектов, ожидание отказа первого объекта и фиксацию до выработки им ресурса на рабочих режимах работы с определением времени наработки до отказа. Затем фиксируют время наработки остальных объектов в момент времени отказа первого объекта, формируют на основе выборки по испытываемым объектам с соответствующими им временами отказа или наработок статистический ряд, сортируемый по возрастанию времени наработки. Определяют по сформированному статистическому ряду накопленные интенсивности отказов, выбирают функцию распределения и определяют значения ее параметров; рассчитывают гамма-процентные показатели ресурса, на основании которых определяют остаточный ресурс. Кроме того, определяют остаточный ресурс при отказе каждого последующего объекта для повышения точности определения остаточного ресурса

Признаками второго, наиболее близкого аналога, совпадающие с существенными признаками заявляемого изобретения являются определение интенсивности отказов и применение функции распределения.

Недостатком наиболее близкого аналога является необходимость проведения испытания на нескольких объектах с различной, достаточно продолжительной длительностью (несколько сотен часов на каждом объекте).

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в получении прогноза интенсивности отказов протяженного трубопровода в зависимости от скорости внутренней коррозии без обследования трубопровода.

Технический результат, достигаемый при реализации данного изобретения, состоит в сокращении времени и объемов испытаний при прогнозировании интенсивности отказов трубопроводов на основе статистического анализа глубины коррозии на образцах, краткосрочно экспонируемых в трубопроводе.

Указанный технический результат достигается, а техническая проблема решается за счет того, что в способе прогнозирования интенсивности отказов трубопровода экспонируют не менее трех образцов в действующем трубопроводе, после чего наносят на образцы сетки для сегментации поверхности образцов, замеряют глубины местной коррозии на каждом сегменте, затем определяют наиболее достоверную для полученных максимальных значений местной коррозии функцию распределения и для полученной выборки максимальных значений местной коррозии для каждого сегмента рассчитывают параметры распределения, после этого рассчитывают прогнозируемую глубину местной коррозии для внутренней поверхности трубопровода и определяют скорость коррозии, по полученным выборкам времени отказов определяются параметры распределения количества отказов от времени и рассчитывают интенсивность отказов.

Кроме того, указанный технический результат достигается в частных случаях реализации изобретения! за счет того, что:

- в качестве образцов применяют плоские пластины, изготовленные из стали марки трубопровода;

- результаты коррозионных испытаний образцов на основе вероятностных методов распространяют на трубопровод в целом;

- прогноз интенсивности отказов проводят на основе полученных данных за короткий промежуток времени.

Технический результат достигается в результате применения математического аппарата на основе статистических методов, что позволяет распространить результаты, полученные на образцах малой площади, на трубопровод в целом, вывести зависимость скорости коррозии от времени и рассчитать интенсивность отказов трубопровода и количество отказов за определенный промежуток времени.

Заявленный способ прогнозирования интенсивности отказов трубопровода осуществляют в несколько этапов, которые иллюстрируются чертежами, где на фиг. 1 показан вид сверху образца с нанесенной сеткой для сегментации поверхности, на фиг. 2 - зависимость интенсивности отказов от времени эксплуатации трубопроводной системы поддержания пластового давления.

На фиг. 1 обозначено: 1 - образец; 2 - сектор.

На первом этапе в определенной точке действующего трубопровода экспонируют не менее трех образцов 1 (образцы №№1, 2 и 3) длительностью соответственно t1, t2 и t3. Образцы представляют собой плоские пластины, изготовленные из стали марки трубопровода. Продолжительность испытаний зависит от коррозионной агрессивности перекачиваемой среды, однако вследствие одновременности экспонирования образцов она носит краткосрочный характер.

На втором этапе на образцы после экспозиции в действующем трубопроводе наносят сетки для сегментации поверхности. Для этого разбивают образцы 1 (фиг. 1) на сектора 2 (размером 1 см × 1 см) путем нанесения рисок с образованием сегментов площадью S0. Для доверительной вероятности 0,90, допустимой относительной ошибке 10%, коэффициента вариации 0,2 (это соответствует наблюдаемой на практике малой неравномерности коррозии) достаточно 8 точек измерения. На образцах образуют 6 сегментов с одной стороны и 6 с другой, что обеспечивает необходимую выборку в случае отбраковки отдельных сегментов.

На третьем этапе проводят замеры глубины местной коррозии на каждом сегменте.

На четвертом этапе определяют наиболее достоверную для полученных максимальных значений местной коррозии функцию распределения.

На пятом этапе для полученной выборки максимальных значений местной коррозии для каждого сегмента рассчитывают параметры распределения μi, и σi (i=1, 2, 3 - номер образца). Для расчетов прогнозируемой глубины на всем трубопроводе дальнейшие этапы даны для экстремального распределения типа Гумбеля, которое используют при статистических исследованиях (ГОСТ 50779.10-2000) для моделирования распределения максимума (или минимума) ряда образцов различных распределений.

На шестом этапе рассчитывают прогнозируемую глубину местной коррозии для трубопровода с площадью внутренней поверхности S, с учетом масштабного фактора (M=S0/S) с достоверностью γ по формуле:

Таким образом, результаты коррозионных испытаний образцов на основе вероятностных методов переносят на трубопровод, являющийся протяженным объектом.

На седьмом этапе определяют:

- скорость коррозии по формуле Cк=hma/t;

- отбраковочную толщину стенки трубопровода исходя из марки стали, диаметра трубопровода и рабочего давления;

- время до разрушения.

На восьмом этапе по полученным выборкам времени отказов определяются параметры распределения количества отказов от времени μ и σ и проводится расчет интенсивности отказов по формуле:

Результаты расчета интенсивности отказов предложенным способом для трубопроводной системы поддержания пластового давления приведены в таблице.

На основе расчетных данных таблицы строят зависимость интенсивности отказов от времени эксплуатации трубопроводной системы поддержания пластового давления (фиг. 2).

Зависимость интенсивности отказов от времени подчиняется экспоненциальному закону:

где A, b - параметры экспоненты.

По результатам расчетов, приведенных в таблице, уравнение имеет вид:

Количество отказов за определенный промежуток времени от t1 до t2 рассчитывают по формуле:

Таким образом, предложенный способ позволяет сокращать время и объем испытаний при прогнозировании интенсивности отказов трубопроводов, так как используется статистический анализ глубины коррозии на образцах, краткосрочно экспонируемых в трубопроводе.

Похожие патенты RU2730541C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ТОНКОСТЕННЫХ ОБОЛОЧЕК ИЗ РЕЗЕРВУАРНЫХ И ТРУБНЫХ СТАЛЕЙ 2002
  • Белкин А.П.
  • Гужавин Г.Г.
  • Земцов С.П.
  • Кишик В.В.
  • Опалев А.Ю.
  • Парфенов И.И.
  • Стрелко С.В.
RU2234079C2
СПОСОБ МОНИТОРИНГА КОРРОЗИИ ТРУБОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Гончаров Валерий Александрович
RU2459136C2
Способ противокоррозионной защиты магистрального трубопровода в условиях города. 2020
  • Какалин Павел Павлович
  • Мартыненко Денис Сергеевич
  • Шашнов Денис Петрович
RU2749962C1
СПОСОБ И УСТРОЙСТВО УЧЕТА ВЫРАБОТКИ РЕСУРСА АППАРАТУРЫ ЖЕЛЕЗНОДОРОЖНОЙ АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ 2020
  • Зуев Денис Владимирович
  • Седых Дмитрий Владимирович
  • Бочкарев Сергей Владимирович
  • Шепель Александр Сергеевич
RU2753855C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ДЕТАЛЕЙ МАШИН 2022
  • Громыка Дмитрий Сергеевич
  • Гоголинский Кирилл Валерьевич
  • Смирнов Юрий Дмитриевич
  • Кремчеев Эльдар Абдоллович
RU2795665C1
Способ определения количества выходящих из строя объектов с использованием данных о наработках эксплуатируемых технических объектов 2021
  • Петроченков Антон Борисович
  • Бочкарев Сергей Васильевич
  • Овсянников Михаил Владимирович
  • Буханов Сергей Александрович
  • Лейзгольд Карина Анатольевна
RU2782634C1
СПОСОБ АДАПТИВНОГО ПРОГНОЗИРОВАНИЯ ОСТАТОЧНОГО РЕСУРСА ЭКСПЛУАТАЦИИ СЛОЖНЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Бекаревич Антон Андреевич
  • Будадин Олег Николаевич
  • Морозова Татьяна Юрьевна
  • Топоров Виктор Иванович
RU2533321C1
Способ прогнозирования технического состояния и оперативной оценки остаточного ресурса гидроакустического комплекса корабля с применением информационно-сопроводительной системы 2022
  • Селезнев Игорь Александрович
  • Ивакин Ян Альбертович
  • Красников Иван Александрович
RU2793152C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ТЕХНИЧЕСКИХ ОБЪЕКТОВ 2012
  • Бочкарев Сергей Васильевич
  • Цаплин Алексей Иванович
  • Овсянников Михаил Владимирович
  • Буханов Сергей Александрович
  • Петроченков Антон Борисович
  • Ташкинов Анатолий Александрович
  • Арбузов Игорь Александрович
  • Щенятский Дмитрий Валерьевич
RU2502974C1
Способ комплексного анализа параметров машины непрерывного литья заготовок 2023
  • Чиглинцев Алексей Викторович
  • Морозов Ярослав Павлович
  • Анохин Александр Николаевич
  • Прохоров Андрей Павлович
RU2825196C1

Иллюстрации к изобретению RU 2 730 541 C1

Реферат патента 2020 года Способ прогнозирования интенсивности отказов трубопровода

Изобретение относится к области измерительной техники, к испытаниям, диагностике и эксплуатации трубопроводов, а конкретно к способам прогноза интенсивности отказов протяженного трубопровода в зависимости от скорости внутренней коррозии без обследования трубопровода. Способ состоит в сокращении времени и объемов испытаний при прогнозировании интенсивности отказов трубопроводов на основе статистического анализа глубины коррозии на образцах, краткосрочно экспонируемых в трубопроводе. Технический результат достигается в результате применения математического аппарата на основе статистических методов, что позволяет распространить результаты, полученные на образцах малой площади, на трубопровод в целом, вывести зависимость I скорости коррозии от времени и рассчитать интенсивность отказов трубопровода и количество отказов за определенный промежуток времени. Изобретение обеспечивает получение прогноза интенсивности отказов протяженного трубопровода в зависимости от скорости внутренней коррозии без обследования трубопровода. 3 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 730 541 C1

1. Способ прогнозирования интенсивности отказов трубопровода, характеризующийся тем, что экспонируют не менее трех образцов в действующем трубопроводе, после чего наносят на образцы сетки для сегментации поверхности образцов, замеряют глубины местной коррозии на каждом сегменте, затем определяют наиболее достоверную для полученных максимальных значений местной коррозии функцию распределения и для полученной выборки максимальных значений местной коррозии для каждого сегмента рассчитывают параметры распределения, после этого рассчитывают прогнозируемую глубину местной коррозии для внутренней поверхности трубопровода и определяют скорость коррозии, по полученным выборкам времени отказов определяются параметры распределения количества отказов от времени и рассчитывают интенсивность отказов.

2. Способ по п. 1, отличающийся тем, что в качестве образцов применяют плоские пластины, изготовленные из стали марки трубопровода.

3. Способ по п. 1, отличающийся тем, что результаты коррозионных испытаний образцов на основе вероятностных методов распространяют на трубопровод в целом.

4. Способ по п. 1, отличающийся тем, что прогноз интенсивности отказов проводят на основе данных, полученных за короткий промежуток времени.

Документы, цитированные в отчете о поиске Патент 2020 года RU2730541C1

СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ТЕХНИЧЕСКИХ ОБЪЕКТОВ 2012
  • Бочкарев Сергей Васильевич
  • Цаплин Алексей Иванович
  • Овсянников Михаил Владимирович
  • Буханов Сергей Александрович
  • Петроченков Антон Борисович
  • Ташкинов Анатолий Александрович
  • Арбузов Игорь Александрович
  • Щенятский Дмитрий Валерьевич
RU2502974C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА 2002
  • Будзуляк Б.В.
  • Кудрявцев В.В.
  • Демаков М.В.
  • Гайдт Д.Д.
  • Сметанин Ф.Е.
  • Шайхутдинов А.З.
  • Салюков В.В.
RU2221231C2
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСА ТЕХНИЧЕСКИХ УСТРОЙСТВ 2011
  • Черепанов Анатолий Петрович
RU2454648C1
US 4998208 A1, 05.03.1991
JP 63027732 A, 05.02.1988.

RU 2 730 541 C1

Авторы

Худякова Лариса Петровна

Шестаков Александр Анатольевич

Фархетдинов Ильшат Ревинерович

Даты

2020-08-24Публикация

2019-12-06Подача