СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ДЕТАЛЕЙ МАШИН Российский патент 2023 года по МПК G01M13/00 G01M15/05 

Описание патента на изобретение RU2795665C1

Изобретение относится к области машиностроения и неразрушающего контроля и может быть использовано при техническом обслуживании, ремонте и техническом диагностировании горных машин для определения остаточного ресурса деталей исполнительного оборудования.

Известен способ определения остаточного ресурса металла труб эксплуатируемого магистрального трубопровода (Патент на изобретение РФ 2536783, опубл. 27.12.2014), заключающийся в вырезке образцов для проведения циклических и усталостных испытаний и измерение твердости поверхности металла.

Недостатком данного способа является то, что результаты усталостных испытаний деталей характеризуют степень изнашивания агрегата в целом и недостаточно информативны при локальном износе поверхности, характерном для исполнительного оборудования горных машин

Известен способ определения остаточного ресурса конструкций (Патент на изобретение РФ № 2108560, опубл. 10.04.1998), заключающийся в определении величины ударной вязкости материала конструкции и прогнозе величины остаточном ресурсе конструкции в зависимости от нормативной величины ударной вязкости.

Недостатком данного способа является слабая корреляция значений ударной вязкости и остаточного ресурса деталей горных машин, работающих в нестандартных условиях эксплуатации.

Известен способ контроля технического состояния машин (Патент РФ № 2654306, опубл. 17.05.2018), заключающийся в неразрушающем контроле всех типов вращающегося оборудования акустическими методами. По совокупности экспериментальных уровней спектральных составляющих вибрации и расчетных уровней энергоемкости деталей в энергетических формах и спектрах кинетических и потенциальных энергий машины получают результат контроля объекта как вид его технического состояния с указанием места расположения, типа и причин возникновения дефектов.

Недостатком данного способа является то, что уровни спектральных составляющих вибрации и расчетные уровни энергоемкости деталей характеризуют степень изнашивания агрегата в целом и недостаточно информативны при локальном износе поверхности, характерном для исполнительного оборудования горных машин

Известен способ диагностики повреждений деталей машин (Патент РФ № 2606164, опубл. 10.01.2017), заключающийся в определении технического состояния машинных агрегатов методом диагностики уровня вибрации в информативных точках корпуса машины в информативной полосе частот, фиксации выбросов вибрации, длительности интервалов между выбросами, построению трендов изменения длительности интервалов и их отношений, а также сравнения полученных значений с критическими границами.

Недостатком данного способа является то, что критерий уровня вибрации характеризует степень изнашивания агрегата в целом и недостаточно информативен при локальном износе поверхности, характерном для исполнительного оборудования горных машин.

Известен способ определения остаточного ресурса технических объектов новой техники (Патент РФ № 2502974, опубл. 27.12.2013), позволяющий определить остаточный ресурс с помощью испытания объектов до выработки ими ресурса на рабочих режимах работы с определением времени наработки до отказа. В способе проводится испытание как минимум два объекта, ожидают отказа первого объекта и фиксируют момент времени его отказа, фиксируют времена наработок остальных испытываемых объектов в момент времени отказа первого объекта. На основе выборки по испытываемым объектам с соответствующими им временами отказа или наработок формируют статистический ряд, сортируемый по возрастанию времени наработки. По сформированному статистическому ряду определяют накопленные интенсивности отказов, затем выбирают функцию распределения, определяют значения ее параметров и рассчитывают гамма-процентные показатели ресурса, на основании которых определяют остаточный ресурс.

Недостатком данного способа является то, что остаточный ресурс определяется через статистический анализ отказов, в то время как ресурс исполнительного оборудования горных машин оценивается по степени близости к предельному состоянию, которое в большинстве случаев не должно приводить к отказу.

Известен способ прогнозирования ресурса технических устройств (Патент РФ № 2454648, опубл. 27.06.2012), в частности сосудов давления, резервуаров и трубопроводов, заключающийся в оценке исходного, продляемого и остаточного ресурса по степени износа при снижении запасов прочности, с учетом имеющихся дефектов, объема неразрушающего контроля, проведенного при первичном техническом диагностировании, коэффициента ответственности в зависимости от группы или класса опасности технического устройства, показателя коррозии и коррозионной стойкости материалов.

Недостатком данного способа является неопределенность диагностических критериев, типов контролируемых дефектов и методов неразрушающего контроля, а также необходимость остановки работы исследуемого оборудования, что может быть затруднительно на многих производствах.

Известен способ определения остаточного ресурса деталей машин, принятый за прототип (Патент РФ № 2733105, опубл. 29.09.2020), и заключающийся в оценке остаточного ресурса, осуществляемой с учетом вариации среднего срока службы, среднеквадратического значения, стационарности процесса получения диагностических данных и определения его как разности между прогнозируемым средним сроком службы и текущим временем контроля - текущей наработкой. При этом прогнозируемый средний срок службы определяют по интервальной оценке для случайной величины путем неоднократного проведения измерений параметра, характеризующего ресурс детали, с построением зависимости изменения данного параметра до его предельного значения, затем проведения таких же замеров в отношении второго и последующих параметров, характеризующих ресурс детали, статистической обработки полученных данных с объединением их в один массив и определением среднестатистических показателей среднего ресурса, среднеквадратического отклонения, а остаточный ресурс определяется по формуле на основе указанных параметров.

Недостатком данного способа является то, что предложенная методика расчета степени износа пропорциональна времени наработки, что не соответствует действительности, при этом информативными являются только предельные значения диагностических параметров при достижении предельного состояния детали и не учитываются абсолютное значение и скорость изменения диагностических параметров в процессе эксплуатации. Этот недостаток не позволяет оценить текущий износ детали по фактическим значениям диагностических параметров.

Техническим результатом является повышение достоверности и точности определения остаточного ресурса деталей машин.

Технический результат достигается тем, что параметры измеряют с заданной периодичностью во времени с момента начала эксплуатации детали до наступления предельного состояния, далее методом регрессионного анализа строят аппроксимирующие функции, которые составляют непрерывную зависимость параметров ресурса детали от времени ее эксплуатации, затем проводят измерения аналогичных параметров для деталей аналогичного вида в подобных условиях эксплуатации, после этого сравнивают значения измеренных параметров со значениями аналогичных параметров на построенной ранее зависимости и определяют остаточный ресурс детали Tост в % по формуле

Tост = (Tдиагпред)х100%,

где Тдиаг - срок эксплуатации детали, соответствующий значениям параметров, характеризующих ресурс детали, на построенной зависимости параметров, характеризующих ресурс детали, во времени,

Тпред - предельный срок эксплуатации детали, соответствующий предельному значению параметров, характеризующих ресурс детали.

Способ поясняется следующими фигурами:

фиг. 1 - график изменения диагностических параметров с увеличением срока эксплуатации коронки.

Способ осуществляется следующим образом. На поверхности исследуемой детали в процессе ее эксплуатации проводят периодические измерения значений параметров, характеризующих ресурс детали. Измерения проводят с момента начала эксплуатации детали до момента снятия ее с эксплуатации, фиксируя значения параметров, характеризующих ресурс детали, и текущий срок эксплуатации детали Тдиаг, получая таким образом массив данных, включающих значения величин параметров, характеризующих ресурс детали, и соответствующий этим значениям срок эксплуатации детали. Измерения проводят по регулярной сетке, при этом в качестве итогового значения измеряемых величин выбирают среднее арифметическое между значениями в каждом узле сетки. Измерения проводят на в области поверхностного слоя детали, где вследствие процессов ударно-абразивного изнашивания образуется наклеп.

В момент снятия детали с эксплуатации, фиксируют предельный срок эксплуатации Tпред, а также значения параметров, характеризующих ресурс детали, соответствующих предельному сроку эксплуатации детали.

По полученному массиву данных методом регрессионного анализа строят аппроксимирующие функции, составляющие непрерывную зависимость значений параметров, характеризующих ресурс детали, от времени эксплуатации детали.

На основе построенной зависимости оценивают величину остаточного ресурса аналогичного вида деталей в подобных условиях эксплуатации. Для этого на поверхности исследуемой детали проводят измерения аналогичных параметров, характеризующих ресурс детали, а остаточный ресурс Tост определяют в % по формуле

Tост = (Tдиагпред)х100%,

где Тдиаг - срок эксплуатации детали, соответствующий значениям и скорости изменения значений параметров, характеризующих ресурс детали, от времени, Тпред - предельный срок эксплуатации детали, соответствующий предельному значению параметров, характеризующих ресурс детали.

Способ поясняется следующим примером.

Определение остаточного ресурса коронки зуба ковша экскаватора.

Были проведены еженедельные замеры твердости и показателя дефектности поверхностного слоя коронки зуба ковша гидравлического экскаватора Komatsu PC-400LC-7D в области наклепа, расположенной в средней части верхней поверхности коронки по описанной схеме.

Для измерения твердости поверхности был выбран портативный твердомер, реализующий динамический метод Либа, а показатель дефектности измерялся с помощью портативного вихретокового дефектоскопа.

После диагностики изношенных коронок, в качестве критериев достижения предельного состояния были приняты величины твердости 495 НВ и показателя дефектности поверхности 750 мкм. Для данных условий предельный срок эксплуатации составляет в среднем 16 недель.

Результаты еженедельной диагностики представлены в виде графика зависимости значений величин твердости и показателя дефектности от срока эксплуатации и представлены на фиг. 1.

Далее на предприятии был проведен мониторинг твердости и показателя дефектности поверхности коронок и, на основании построенной зависимости, был рассчитан остаточный ресурс деталей. Для одной из коронок измеренная величина твердости была определена как 487 HB, тогда величина остаточного ресурса коронки равна:

Tост = (Tдиагпред)х100% = (13,2/16)х100% = 82,5%.

Данный способ позволяет своевременно и точно произвести оценку срока наступления предельного состояния детали.

Применение данного способа определения остаточного ресурса деталей машин позволяет значительно повысить достоверности и точности определения остаточного ресурса деталей машин.

Похожие патенты RU2795665C1

название год авторы номер документа
Способ определения остаточного ресурса деталей машин 2019
  • Дорохов Алексей Семенович
  • Денисов Вячеслав Александрович
  • Соломашкин Алексей Алексеевич
RU2733105C1
Способ долгосрочного прогнозирования индивидуального ресурса гидроагрегата в условиях часто меняющихся режимных факторов 2020
  • Георгиевская Евгения Викторовна
  • Георгиевский Николай Владимирович
RU2756781C2
Способ определения остаточного ресурса топливного насоса 2022
  • Гуревич Оскар Соломонович
  • Гулиенко Анатолий Иванович
RU2798891C1
Способ эксплуатационного контроля технического состояния и прогнозирования ресурса подшипников электродвигателей 2016
  • Некрасов Антон Алексеевич
  • Некрасов Алексей Иосифович
  • Сырых Николай Николаевич
  • Трубников Владимир Захарович
RU2622493C1
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСА ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ 2010
  • Черепанов Анатолий Петрович
RU2436103C1
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ РАБОТЫ ЦЕНТРОБЕЖНОГО ПЕРЕКАЧИВАЮЩЕГО АГРЕГАТА УГЛЕВОДОРОДНОГО СЫРЬЯ И СИСТЕМА ДИАГНОСТИРОВАНИЯ ЕГО ТЕХНИЧЕСКОГО СОСТОЯНИЯ 2007
  • Щепин Леонид Сергеевич
  • Зарипов Расих Минисламович
RU2360148C1
СПОСОБ АДАПТИВНОГО ПРОГНОЗИРОВАНИЯ ОСТАТОЧНОГО РЕСУРСА ЭКСПЛУАТАЦИИ СЛОЖНЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Бекаревич Антон Андреевич
  • Будадин Олег Николаевич
  • Морозова Татьяна Юрьевна
  • Топоров Виктор Иванович
RU2533321C1
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСА ТЕХНИЧЕСКИХ УСТРОЙСТВ 2011
  • Черепанов Анатолий Петрович
RU2454648C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ДЕТАЛЕЙ 2004
  • Попов Сергей Ильич
  • Ефимов Виктор Петрович
  • Малых Николай Александрович
  • Пранов Александр Алексеевич
  • Андронов Владислав Анатольевич
  • Бамбулевич Валентин Брониславович
RU2293304C2
Способ эксплуатационного контроля технического состояния подшипников и обмотки статора электродвигателя 2019
  • Некрасов Алексей Иосифович
  • Лобачевский Яков Петрович
  • Некрасов Антон Алексеевич
  • Подобедов Павел Николаевич
  • Маслеников Павел Александрович
RU2708533C1

Иллюстрации к изобретению RU 2 795 665 C1

Реферат патента 2023 года СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ДЕТАЛЕЙ МАШИН

Изобретение относится к области машиностроения и неразрушающего контроля и может быть использовано для определения остаточного ресурса деталей исполнительного оборудования. Способ определения остаточного ресурса деталей машин включает построение зависимости изменения во времени параметра, характеризующего ресурс детали, до его предельного значения, проведение таких же замеров в отношении второго и последующих параметров, характеризующих ресурс детали, статистическую обработку полученных данных с объединением их в один массив, дальнейшую обработку методом регрессионного анализа. При этом остаточный ресурс детали Tост в % определяют по формуле Tост = (Tдиагпред) × 100%, где Тдиаг – срок эксплуатации детали, соответствующий значениям параметров, характеризующих ресурс детали, на построенной зависимости параметров, характеризующих ресурс детали, во времени, Тпред – предельный срок эксплуатации детали, соответствующий предельному значению параметров, характеризующих ресурс детали. Технический результат - повышение достоверности и точности определения остаточного ресурса деталей машин. 1 ил.

Формула изобретения RU 2 795 665 C1

Способ определения остаточного ресурса деталей машин, включающий построение зависимости изменения во времени параметра, характеризующего ресурс детали, до его предельного значения, проведение таких же замеров в отношении второго и последующих параметров, характеризующих ресурс детали, статистическую обработку полученных данных с объединением их в один массив, отличающийся тем, что параметры измеряют с заданной периодичностью во времени с момента начала эксплуатации детали до наступления предельного состояния, далее методом регрессионного анализа строят аппроксимирующие функции, которые составляют непрерывную зависимость параметров ресурса детали от времени её эксплуатации, затем проводят измерения аналогичных параметров для деталей аналогичного вида в подобных условиях эксплуатации, после этого сравнивают значения измеренных параметров со значениями аналогичных параметров на построенной ранее зависимости и определяют остаточный ресурс детали Tост в % по формуле

Tост = (Tдиагпред) × 100%,

где Тдиаг – срок эксплуатации детали, соответствующий значениям параметров, характеризующих ресурс детали, на построенной зависимости параметров, характеризующих ресурс детали, во времени,

Тпред – предельный срок эксплуатации детали, соответствующий предельному значению параметров, характеризующих ресурс детали.

Документы, цитированные в отчете о поиске Патент 2023 года RU2795665C1

Способ определения остаточного ресурса деталей машин 2019
  • Дорохов Алексей Семенович
  • Денисов Вячеслав Александрович
  • Соломашкин Алексей Алексеевич
RU2733105C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ И РЕСУРСА ИЗОЛЯЦИОННОЙ СИСТЕМЫ ЭЛЕКТРООБОРУДОВАНИЯ 2012
  • Чернышев Валентин Александрович
  • Зенова Елена Валентиновна
  • Кисляков Максим Анатольевич
  • Карпеченков Николай Данилович
  • Чернов Валерий Александрович
RU2491561C1
Агишев В
Н., Трунин О
Н., Кушнаренко В
М
Определение остаточного ресурса насосно-компрессорного оборудования // Вестник ОГУ
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Прибор для нагревания перетягиваемых бандажей подвижного состава 1917
  • Колоницкий Е.А.
SU15A1
RU

RU 2 795 665 C1

Авторы

Громыка Дмитрий Сергеевич

Гоголинский Кирилл Валерьевич

Смирнов Юрий Дмитриевич

Кремчеев Эльдар Абдоллович

Даты

2023-05-05Публикация

2022-07-18Подача