Способ непрерывного компаундирования масел Российский патент 2020 года по МПК B01F5/00 B01F13/08 

Описание патента на изобретение RU2734424C1

Изобретение относится к способам компаундирования масел, предназначаемых для различных целей, например масел для смазки трущихся деталей, масел трансформаторных, масел других предназначений.

Известно, что такие масла изготавливают при температуре 60-80°С, смешивая так называемые базовые масла, которые являются или фракцией, выделенной из нефти, или синтетическим, преимущественно кремнийорганическим полимером, или смесью нефтяной фракции с синтетическим маслом (такие масла называют полусинтетическими) с пакетом присадок (В.И. Вигдорович, П.Г. Князева, Л.Е. Цыганкова и др. Исследование свойств нефтяных и синтетических масел как основы противокоррозионных свойств материалов // Химия и технология топлив и масел 2019, №4, С. 35-41). Пакет присадок - это смесь веществ, придающих базовому маслу свойства, которые требуются от него для того, чтобы оно стало пригодным для заданной сферы использования.

Известен способ компаундирования, в котором осуществляют введение пакета присадок в базовое масло, разогретое до 60-70°С, и перемешивание лопастной мешалкой, совершающей 80-100 об/мин в течение 3-6 часов (патент РФ №2374311, МПК С01М 16300, опубл. 27.11.2009, Бюл. №33).

Известный способ является энергоемким, продолжительным и периодичным, энергия тратится на нагревание и перемешивание.

Известен способ компаундирования воздействием на смесь базового масла с пакетом присадок ультразвуком в режиме акустической кавитации на резонансной частоте 23 кГц (патент РФ №2591918, МПК С01М 177/00, В82В 1/00, B22F 9/04, С10М 125/04, опубл. 20.07.2016, Бюл. №20).

Недостатком известного способа является то, что он периодичен, энергоемок.

Наиболее близким к заявленному способу является способ получения смазочных материалов - товарных масел и смазочно-охлаждающих жидкостей путем инициации кавитации и возникновения процесса «холодного» смешивания базовых масел и присадок (патент РФ №2633571, МПК B01F 5/06, опубл. 13.10.2017, Бюл. №28).

Недостатками известного способа компаундирования являются энергоемкость, продолжительность и периодичность процесса.

Задачей изобретения является кратковременное, «холодное» и с низким расходом энергии компаундирование масел и повышение индекса вязкости.

Результатом использования предлагаемого изобретения является повышение индекса вязкости, снижение энергозатрат на компаундирование, обеспечение непрерывности кратковременного, «холодного» процесса компаундирования за счет того, что компаундирование масел осуществляют в аппарате вихревого слоя.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе непрерывного компаундирования масел, включающем смешивание базовых масел с пакетом присадок, согласно изобретению, что смешивание базовых масел с пакетом присадок осуществляют непрерывно в потоке смеси в аппарате вихревого слоя, в котором на смесь базового масла с пакетом присадок при температуре 18-21°С одновременно воздействуют ударами цилиндрических ферромагнитных тел, расположенных в рабочей камере аппарата вихревого слоя, со скоростью изменения положения частиц 3000-4800 раз в минуту каждой частицы, переменным электромагнитным полем с частотой 3000-4800 изменений в минуту и кавитацией, возникающей под воздействием быстро движущихся ферромагнитных тел в масле, при этом пакет присадок диспергируется в базовом масле в течение 1-3 секунд, а процесс компаундирования ведут непрерывно, подавая поточно в рабочую камеру аппарата вихревого слоя смесь базового масла с пакетом присадок при температуре 18-21°С, давлении 2 атмосферы, частоте электротока 60-80 Гц и объемном расходе смеси 30-55 л/мин.

Аппараты вихревого слоя ввиду простого устройства обеспечивают высокую надежность в работе, а из-за малой массы и небольших габаритов легко устанавливаются в производственных помещениях без специальных фундаментов (Д.Д. Логвиненко, О.П. Шеляков Интенсификация технологических процессов в аппаратах с вихревым слоем // Технша, Киев 1976 г., стр. 78, табл. 18, Карт М.А., Карт Б.М., Войтович В.А., Захарычев Е.А., Шварев P.P. Использование аппратаов вихревого слоя для получения водомазутных эмульсий // Ж. Химическая техника, №1, 2018). Размещая аппараты параллельно можно обеспечивать заданную производительность.

Наиболее важным показателем качества гидравлического компаундированного масла является индекс вязкости, который иллюстрирует влияние температуры на вязкость масла. Чем это влияние меньше, тем выше значение индекса вязкости: масло с повышенным индексом вязкости, более пригодно при эксплуатации, как при повышенных, так и пониженных температурах. На значение индекса вязкости влияет частота электротока, подаваемого на аппарат вихревого слоя, поскольку от частоты электротока зависит скорость вращения электромагнитного поля, создаваемого в аппарате вихревого слоя, а электромагнитное поле с разной частотой по разному влияет на объект, находящийся под воздействием этого поля, влияет оно и на нефтяные углеводороды (Пивоварова Н.А. и др. Влияние магнитного поля на результаты атмосферной перегонки стабильного газового конденсата // Химия и технология топлив и масел 2019, №1, С. 3-6; Любименко В.А., Фролов В.Н., Крестовников М.П. Математическое моделирование процесса термического крекинга нефтешлама, активированного электромагнитным излучением // Химия и технология топлив и масел 2016, №2, С 12-15; Винокуров В.А., Крестовников М.П., Фролов В.И. и др. Влияние электромагнитного излучения на групповой и фракционный состав нефтей и нефтяных остатков // Химия и технология топлив и масел 2015, №4, С. 3-6).

В результате проведенных экспериментальных исследований было установлено, что на индекс вязкости при непрерывном компаундировании масел при температуре не ниже 18°С и объемном расходе смеси базового масла и пакета присадок через аппарат вихревого слоя 30 л/мин влияет частота электротока, что показано в таблице 1.

Из результатов, приведенных в табл. 1, видно, что наибольший индекс вязкости гидравлического масла достигается при частоте электротока 70 Гц.

В результате проведенных экспериментальных исследований было установлено, что на значение индекса вязкости влияет время нахождения смеси базового масла и пакета присадок в электромагнитном поле, определяемое объемным расходом смеси, что показано в таблице 2.

Из результатов, приведенных в таблице 2, видно, что наивысший показатель индекса вязкости достигается при объемном расходе смеси 45 л/мин.

Предлагаемый способ осуществляют следующим образом. Базовое масло и пакет присадок подают в рабочую камеру аппарата вихревого слоя, в которой размещены цилиндрические ферромагнитные тела. Осуществляют кратковременное, «холодное» смешивание непрерывно в потоке смеси. На смесь базового масла с пакетом присадок при температуре 18-21°С одновременно воздействуют ударами цилиндрических ферромагнитных тел со скоростью изменения положения частиц 3000-4800 раз в минуту каждой частицы, переменным электромагнитным полем с частотой 3000-4800 изменений в минуту и кавитацией, возникающей под воздействием быстро движущихся ферромагнитных тел в масле. Пакет присадок диспергируют в базовом масле в течение 1-3 секунд, подавая поточно базовое масло и пакет присадок при давлении 2-3 атмосферы и температуре 18-21°С, частоте электротока 60-80 Гц и объемном расходе смеси 30-55 л/мин, получая на выходе из аппарата вихревого слоя продукт с заданными свойствами.

Примеры, иллюстрирующие качество масел, получаемых предлагаемым способом в сравнении с маслами, получаемыми при перемешивании базового масла с пакетом присадок лопастной мешалкой, совершающей 70 об/мин при температуре 70°С в течение 4 часов.

Пример 1. Использовано базовое масло VHVI-4.

В качестве присадок были использованы Irgalube 3010A и ПМА Д.

Индекс вязкости компаундированного масла после нагрева его до 70°С и перемешивания при такой температуре в течение 4-х часов при скорости вращения мешалки 70 об/мин равен 168.

Индекс вязкости аналогичного масла, компаундированного предлагаемым способом при температуре 21°С, при объемном расходе смеси в аппарате вихревого слоя 45 л/мин (1,5 сек в рабочей зоне аппарата вихревого слоя), при скорости изменения положения частиц 4200 раз в минуту каждой частицы, при давлении 2 атм, частоте электромагнитного поля 70 Гц равен 229.

Пример 2. Использовано базовое масло VHVI-4

В качестве присадок были использованы Penrolad 9200, ПМА Д 110, Viscotech 6540

Индекс вязкости компаундированного масла после нагрева его до 70°С и перемешивания при такой температуре в течение 4-х часов при скорости вращения мешалки 70 об/мин равен 184.

Индекс вязкости аналогичного масла, компаундированного предлагаемым способом при температуре 21°С, при объемном расходе смеси в аппарате вихревого слоя 45 л/мин (1,5 сек в рабочей зоне аппарата вихревого слоя), при скорости изменения положения частиц 4200 раз в минуту каждой частицы, при давлении 2 атм, частоте электромагнитного поля 70 Гц равен 202.

Похожие патенты RU2734424C1

название год авторы номер документа
Установка предварительной обработки сточных вод перед биологической очисткой 2020
  • Карт Михаил Аркадьевич
  • Серегин Станислав Александрович
  • Катраева Инна Валентиновна
RU2742877C1
СПОСОБ СНИЖЕНИЯ СОДЕРЖАНИЯ ОРГАНИЧЕСКИХ ХЛОРИДОВ В НЕФТИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Ахмадуллина Альфия Гариповна
  • Карт Михаил Аркадьевич
  • Ахмадуллин Ренат Маратович
  • Серегин Станислав Александрович
  • Гневашов Сергей Геннадьевич
  • Жайлаубаев Бауыржан Маметович
  • Соловьева Татьяна Борисовна
RU2748587C1
СПОСОБ АНАЭРОБНОЙ ПЕРЕРАБОТКИ ЖИДКИХ ОРГАНИЧЕСКИХ ОТХОДОВ 2019
  • Ковалев Дмитрий Александрович
  • Ковалев Андрей Александрович
  • Карт Михаил Аркадьевич
  • Серегин Станислав Александрович
RU2690463C1
Установка для получения железоокисных пигментов из отходов газоочистки металлургического производства 2021
  • Карт Михаил Аркадьевич
  • Никифоров Константин Сергеевич
  • Пресняков Сергей Юрьевич
RU2769857C1
Способ экстракции пектина и других органических веществ из растительных отходов 2021
  • Карт Михаил Аркадьевич
  • Ковалев Дмитрий Александрович
  • Катраева Инна Валентиновна
  • Батушанский Борис Павлович
  • Лесовой Алексей Анатольевич
  • Зыков Евгений Вячеславович
RU2762980C1
ГОМОГЕНИЗАТОР ЖИДКОСТИ 2005
  • Карт Михаил Аркадьевич
  • Романов Андрей Анатольевич
  • Романов Максим Анатольевич
RU2325223C2
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ БИТУМНОЙ ЭМУЛЬСИИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Билалов Радик Рафикович
  • Каримова Лиана Катифьяновна
  • Дебердеев Тимур Рустамович
  • Дебердеев Рустам Якубович
  • Войтович Владимир Антонович
  • Захарычев Евгений Александрович
  • Карт Михаил Аркадьевич
RU2669100C1
СПОСОБ ПОДГОТОВКИ ДИЗЕЛЬНОГО ТОПЛИВА 2005
  • Романов Андрей Анатольевич
  • Карт Михаил Аркадьевич
  • Романов Максим Анатольевич
  • Пресняков Сергей Юрьевич
RU2338919C2
ВОДНО-ДИСПЕРСИОННАЯ ЛАКОКРАСОЧНАЯ КОМПОЗИЦИЯ 2016
  • Войтович Владимир Антонович
  • Захарычев Евгений Александрович
  • Шварев Руслан Рустамович
  • Феоктистова Екатерина Петровна
  • Дебердеев Рустам Якубович
  • Карт Михаил Аркадьевич
RU2637964C1
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ПЛАСТИФИКАТОРОВ ПОЛИВИНИЛХЛОРИДА И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Билалов Радик Рафикович
  • Дебердеев Тимур Рустамович
  • Дебердеев Рустам Якубович
  • Войтович Владимир Антонович
  • Захарычев Евгений Александрович
  • Карт Михаил Аркадьевич
RU2661872C1

Реферат патента 2020 года Способ непрерывного компаундирования масел

Изобретение относится к способам компаундирования масел, предназначаемых для различных целей, например масел для смазки трущихся деталей, масел трансформаторных, масел других предназначений. Способ включает смешивание базовых масел с пакетом присадок непрерывно в потоке смеси в аппарате вихревого слоя при температуре 18-21°С. При этом одновременно воздействуют ударами цилиндрических ферромагнитных тел, расположенных в рабочей камере аппарата вихревого слоя, со скоростью изменения положения частиц 3000-4800 раз в минуту каждой частицы, переменным электромагнитным полем с частотой 3000-4800 изменений в минуту и кавитацией, возникающей под воздействием быстро движущихся ферромагнитных тел в масле. Пакет присадок диспергируется в базовом масле в течение 1-3 секунд. Процесс компаундирования ведут непрерывно, подавая поточно в рабочую камеру аппарата вихревого слоя смесь базового масла с пакетом присадок при температуре 18-21°С, давлении 2 атмосферы, частоте электротока 60-80 Гц и объемном расходе смеси 30-55 л/мин. Технический результат: повышение индекса вязкости, снижение энергозатрат, обеспечение непрерывности процесса компаундирования. 2 табл., 2 пр.

Формула изобретения RU 2 734 424 C1

Способ непрерывного компаундирования масел, включающий смешивание базовых масел с пакетом присадок, отличающийся тем, что смешивание базовых масел с пакетом присадок осуществляют непрерывно в потоке смеси в аппарате вихревого слоя, в котором на смесь базового масла с пакетом присадок при температуре 18-21°С одновременно воздействуют ударами цилиндрических ферромагнитных тел, расположенных в рабочей камере аппарата вихревого слоя, со скоростью изменения положения частиц 3000-4800 раз в минуту каждой частицы, переменным электромагнитным полем с частотой 3000-4800 изменений в минуту и кавитацией, возникающей под воздействием быстро движущихся ферромагнитных тел в масле, при этом пакет присадок диспергируется в базовом масле в течение 1-3 секунд, а процесс компаундирования ведут непрерывно, подавая поточно в рабочую камеру аппарата вихревого слоя смесь базового масла с пакетом присадок при температуре 18-21°С, давлении 2 атмосферы, частоте электротока 60-80 Гц и объемном расходе смеси 30-55 л/мин.

Документы, цитированные в отчете о поиске Патент 2020 года RU2734424C1

МОДУЛЬ ДЛЯ "ХОЛОДНОГО" СМЕШИВАНИЯ СМАЗОЧНЫХ МАТЕРИАЛОВ И СМАЗОЧНО-ОХЛАЖДАЮЩИХ ЖИДКОСТЕЙ 2016
  • Медянский Сергей Сергеевич
RU2633571C1
УСТРОЙСТВО ПРИГОТОВЛЕНИЯ ВЫСОКОДИСПЕРСНЫХ ВОДОТОПЛИВНЫХ ЭМУЛЬСИЙ ВРАЩАЮЩИМСЯ В ПРОТИВОПОЛОЖНЫХ НАПРАВЛЕНИЯХ МАГНИТНЫМ ПОЛЕМ В ДВУХ РАБОЧИХ ЗОНАХ С НАРУЖНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИНДУКТОРАМИ 2010
  • Макухин Виталий Николаевич
  • Стальченко Юрий Павлович
  • Мантузов Антон Викторович
  • Пресняков Сергей Юрьевич
  • Карт Михаил Аркадьевич
  • Клочихин Владимир Леонидович
  • Тарасов Сергей Геннадьевич
RU2446867C1
АППАРАТ ВИХРЕВОГО СЛОЯ 1992
  • Вершинин Николай Петрович
  • Вершинин Петр Николаевич
  • Вершинин Игорь Николаевич
  • Есаулов Игорь Васильевич
RU2072256C1
СПОСОБ АКТИВАЦИИ ПРОЦЕССОВ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2013
  • Борисов Алексей Иванович
  • Аникин Александр Семёнович
RU2526446C1
Способ уменьшения расхода жидкого углеводородного топлива в устройствах для получения тепловой и механической энергии 2018
  • Воробьев Юрий Валентинович
  • Дунаев Анатолий Васильевич
  • Воробьев Юрий Юрьевич
  • Баронин Геннадий Сергеевич
RU2703600C2
СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ 2008
  • Куклев Александр Валентинович
  • Паршин Валерий Михайлович
  • Гончаревич Игорь Фомич
  • Ганин Дмитрий Рудольфович
  • Айзин Юрий Моисеевич
RU2378084C1
DE 102014017938 A1, 09.06.2016.

RU 2 734 424 C1

Авторы

Карт Михаил Аркадьевич

Серегин Станислав Александрович

Даты

2020-10-16Публикация

2019-12-02Подача