СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ Российский патент 2020 года по МПК G01R31/08 

Описание патента на изобретение RU2737511C1

Изобретение относится к контрольно-измерительной технике, и может быть использовано, например, при контроле дефектности изоляции обмоточных проводов.

Известен способ контроля дефектности изоляции проводов, описанный в [1]. В соответствии с этим способом целостность изоляции выражается числом точечных повреждений на проводе определенной длины, зафиксированных с помощью электрического испытательного устройства.

Образец провода длиной (30 ± 1) м протягивают со скоростью (275 ± 25) мм/с между двумя фетровыми пластинами, погруженными в электролитический раствор сернокислого натрия Na2SO4 в воде (концентрация 30 г/л). При этом между жилой провода и раствором, соединенными в электрическую цепь, прикладывают испытательное напряжение постоянного тока (50 ± 3) В при разомкнутой цепи. Усилие, прикладываемое к проводу, должно быть не более 0,03 Н. Точечные повреждения фиксируют соответствующим реле со счетчиком. Счетчик должен срабатывать при сопротивлении изоляции провода менее 10 кОм в течение не менее 0,04 с. Счетчик не должен срабатывать при сопротивлении 15 кОм и более. Цепь для определения повреждений должна работать со скоростью срабатывания (5 ± 1) мс, обеспечивая регистрацию с частотой (500 ± 25) повреждений в минуту при протягивании провода без изоляции. Контроль по указанному способу осуществляют на отрезках провода длиной 30 м, отрезанных от конца провода катушек, выбранных выборочно из партии однотипных катушек. Проводят одно испытание. Фиксируют число точечных повреждений на длине провода 30 м. Если количество точечных повреждений превышает некоторую допустимую для данного типа провода величину, то партию катушек, из которых выбраны испытательные отрезки проводов, отбраковывают.

Недостаток указанного способа заключается в том, что его применяют выборочно, для отрезка проводов, отрезанных от произвольно выбранных из партии катушек провода. Это приводит к тому, что основная часть провода в каждой контролируемой катушке остается не проконтролированной, не проконтролированными оказываются и остальные катушки партии, которые не попали под выборочный контроль, что снижает достоверность контроля. Кроме того, для реализации способа необходимо, чтобы контролируемый отрезок провода протягивался под датчиком точечных повреждений с постоянной относительно низкой (275 ± 25) мм/с скоростью провода. Это снижает точность и производительность контроля. Выбранный датчик точечных повреждений обладает низкой чувствительностью, поэтому указанный способ применяют только для проводов жилой номинальным диаметром до 0,050 мм включительно, имеющих тонкую толщину эмальизоляции. Между тем, как показывает практика, дефекты имеются и на проводах с большим диаметром, где указанный способ не применим. Это ограничивает сферу применения способа. Кроме того, способ является весьма затратным, так как уходят в отходы не только 30 метровые отрезки провода, но и все отбракованные катушки партии, которые не вписываются в диапазон допустимых значений количества точечных повреждений в эмальизоляции проводов.

Известен способ контроля дефектности изоляции проводов, по которому провод протягивают через датчик-электрод, на который относительно жилы провода подается высокое напряжение [2]. В момент прохождения дефекта в эмалевой изоляции через датчик-электрод зажигается коронный разряд и с него путем интегрирования импульсов разряда с постоянной времени интегрирования формируется импульс дефекта, который регистрируется в счетчике. Качество изоляции оценивают по количеству зарегистрированных импульсов в счетчике, считая, что их количество равно количеству дефектных участков изоляции провода.

Недостатком этого способа является низкая точность контроля дефектности, обусловленная особенностями коронного разряда в датчике-электроде. Эти особенности заключаются в том, что ток коронного разряда имеет импульсную форму, и под влиянием различных факторов (поперечные колебания провода, изменение окружающей среды, наличие загрязнения на проводе и т.п.) в моменты подхода дефекта к датчику-электроду и выхода из него разряд может погасать на некоторое время.

В упомянутом способе, для нормирования импульса дефекта интегрируются импульсы коронного разряда с постоянной времени интегрирования. Это приводит к тому, что на низких скоростях движения провода при подходе дефекта к датчику - электроду и выходе из него времена погасания коронного разряда могут превысить время интегрирования, в результате чего один дефект может быть зарегистрирован как два, три и более дефектов.

На высоких скоростях провода за время интегрирования через датчик-электрод пройдет значительный отрезок провода. Если на данном отрезке провода имеются дефекты, то они не будут зарегистрированы. Кроме того, если на проводе имеется N дефектов и время на прохождения участков провода между соседними дефектами меньше времени интегрирования, то эти N дефектов будут зарегистрированы как один дефект.

Известен способ контроля дефектности изоляции провода, согласно которому протягивают контролируемый провод через датчик-электрод, подают на него высокое напряжение до возникновения коронного разряда, измеряют частоту импульсов тока коронного разряда [3].

Однако в известном техническом решении имеют место недостатки: не учтено влияние зоны нестабильности коронного разряда, что приводит к тому, что с двух одинаковых дефектов на поверхности контролируемого провода будет зарегистрировано различное число импульсов коронного разряда, а также то, что при изменении скорости движения провода число импульсов коронного разряда с двух идентичных дефектов в эмальизоляции изменяется еще в более широком диапазоне.

Эти причины не позволяют произвести количественную оценку наличия микротрещин (дефектов) на проводе, а дают лишь некоторую ориентировочную качественную оценку состояния провода, что значительно снижает точность и достоверность контроля известно. Для того чтобы повысить достоверность, точность и оптимальность метрологических характеристик измерителей дефектности изоляции обмоточных проводов необходимо производить калибровку и поверку измерителей дефектности.

Наиболее близким к заявляемому является способ контроля дефектности изоляции провода, описанный в [4]

Способ - прототип заключается в подаче высокого напряжения на датчик электрод, в формировании импульсов дефектов с коронного разряда, при этом передний фронт импульса дефекта формируется по первому импульсу коронного разряда, а задний фронт импульса формируется с задержкой после последнего импульса коронного разряда на время

,

где tз - время задержки; - среднеквадратическое значение длины контролируемого участка провода с момента погасания до момента зажигания коронного разряда в зонах его нестабильности горения при подходе к датчику - электроду и выходу из него дефектного участка изоляции; σ - среднеквадратическое отклонение lз от среднего значения; V - скорость движения контролируемого провода.

Недостатком способа-прототипа является высокое напряжение контроля, а также отсутствие сведений о разрешающей способности датчика дефектов, что приводит к значительным погрешностям в определении протяженности дефектов.

Техническая задача, поставленная в рамках данного изобретения, заключается в снижении напряжения контроля и повышение точности контроля протяженности дефектов.

Решение поставленной технической задачи достигается тем, что в способе контроля дефектности изоляции обмоточных проводов, заключающимся в подаче напряжения на датчик дефектов, и в формировании импульсов дефектов, длительность Ti которых определяется временем горения разряда между жилой провода и электродами датчика дефектов при прохождении дефектного участка изоляции провода в активной зоне датчика дефектов, в процессе контроля в области датчика инициируют высокую напряженность электрического поля, путем создания в упомянутой области резко неоднородного поля, для чего датчик дефектов выполняют в виде кольца, по внутренней окружности которого радиально и равномерно располагают электропроводные микронити, оси которых направлены перпендикулярно оси контролируемого провода, при этом концы микронитей располагают по окружности охватывающей контролируемый проводник таким образом, чтобы они лежали на окружности, диаметр D которой связан с диаметром контролируемого провода d соотношением d≤D≤1,2d, в процессе контроля непрерывно генерируют импульсы, частоту следования которых изменяют прямо пропорционально скорости движения провода, при этом воздушное пространство в области датчика дефектов непрерывно облучают ультрафиолетовым излучением, датчик дефектов перед контролем предварительно калибруют, для чего на бездефектном участке изоляции провода наносят искусственный точечный дефект в виде прокола до токопроводящей жилы провода, после чего указанный участок провода многократно протягивают через датчик дефектов и при каждом последующем протягивании напряжение на датчике повышают по сравнению с предыдущим протягиванием, эту процедуру осуществляют до тех пор пока при прохождении дефектного участка провода в зоне датчика дефектов не загорится коронный разряд, при зажигании которого формируют импульс дефекта, длительностью tс, и подсчитывают количество импульсов скорости k сгенерированных за время tс, после чего напряжение Uр, при котором зажигается упомянутый коронный разряд принимают за рабочее напряжение, и контроль изоляции проводов осуществляют при упомянутой величине напряжения на датчике, причём при прохождении каждого дефектного участка изоляции через датчик дефектов, формируют импульс дефекта длительностью ti и подсчитывают количество ni сгенерированных импульсов скорости за упомянутое время ti, и протяженность li каждого дефекта определяют по формуле l= lэ (ni - k), где lэ - протяженность элементарного отрезка провода прошедшего через датчик дефектов за время одного сгенерированного импульса скорости.

На фиг. 1 представлена осциллограмма напряжения и тока, снятая с датчика дефектов, используемого в способе - прототипе, при прохождении через него дефектного участка изоляции провода.

На фиг. 2 представлена конструкция датчика дефектов.

На фиг. 3 приведена осциллограмма напряжения и тока, снятая с датчика дефектов, используемого в заявляемом способе, при прохождении через него дефектного участка изоляции провода.

На фиг. 4 изображена блок - схема устройства, реализующего заявляемый способ. Рисунки служат для пояснения сущности изобретения.

На фиг. 2 введены следующие обозначения: 1- нанонити; 2 - коронирующий электрод; 3 - отверстия; 4 - диэлектрические стяжки; 5 - диэлектрическое кольцо, 6 - ультрафиолетовый светодиод; 7 - изоляция провода; 8 - жила провода; 9 - крепежные детали; позицией 10 обозначена окружность, на которой завершаются концы нанонитей.

На фиг. 4 введены следующие обозначения: 1 - нанонити, 2 - коронирующий электрод, 3 - диэлектрическое кольцо, 4 - диэлектрические стяжки; 7 - жила провода, 8 - эмалевая изоляция провода, 11 - датчик скорости, 12 - формирователь импульсов скорости, 13 - датчик дефектов, 14 - счетчик импульсов скорости, 15 - ключевое устройство, 16 - счетчик с регулируемым коэффициентом пересчета, 17 - триггер, 18 - RC- цепь, 19 - источник питания датчика дефектов, стрелками показано ультрафиолетовое излучение.

Сущность заявляемого способа заключается в следующем. В заявляемом способе для обнаружения дефектного участка изоляции провода используется явление зажигания коронного разряда между датчиком дефектов и заземленной жилой провода при прохождения дефектного участка изоляции в зоне действия датчика дефектов.

Коронный разряд является самостоятельным разрядом в сравнительно плотном газе. Если к двум электродам, между которыми находится газовый промежуток, приложить электрическое поле, то при определенной разности потенциалов между электродами, которую назовем критической и обозначим через U0, возникает коронный разряд. Величина U0 существенным образом зависит от конфигурации электродов, состава газовой среды в области электродов и от количества свободных электронов в межэлектродной области, количество которых значительно увеличивается при ультрафиолетовом облучении газоразрядного промежутка. При ультрафиолетовом облучении величина U0 в значительной мере снижается. Непосредственное визуальное наблюдение коронного разряда указывает на ряд прерывистых явлений в короне. Прерывистый характер коронного разряда был обнаружен Тричелем [5]. Коронный ток, как показал Тричель, слагается из периодических и правильно чередующихся импульсов. При повышении напряжения сила тока в каждом импульсе остается неизменной, а общая сила тока коронного разряда увеличивается за счет увеличения частоты чередования импульсов. Каждый регулярный импульс представляет собой обычным образом развивающийся ряд лавин, сопровождаемой фотоионизацией в окружающем объеме газа.

Типичный сигнал с датчика дефектов при прохождении через него поврежденного участка изоляции провода приведён на фиг. 1. Осциллограмма снята с датчика дефектов, используемого в способе-прототипе, выполненного в виде двух вращающихся цилиндрических электродов, прижатых друг к другу по образующей, при этом контролируемый провод при контроле находился в области прижатых друг к другу электродов проточке, выполненной по на образующих поверхностях упомянутых электродов. Сигнал на фиг.1 получен при прохождении точечного дефекта в изоляции, искусственно созданного проколом эмалевой изоляции до жилы провода, при этом напряжение контроля датчике было равно -2кВ. На фиг. 1 приведена осциллограмма напряжения (верхняя часть осциллограммы) и тока (нижняя часть осциллограммы), снятая при помощи двухлучевого осциллографа. В зоне а осциллограммы выделен участок осциллограммы в увеличенном масштабе. Видно, что ток сигнала имеет импульсную форму, что подтверждает тот факт, что вид разряда - коронный. Общая длительность сигнала сдатчика дефектов в способе-прототипе обозначена tр. В сигнале с датчика дефектов иногда возникает несколько импульсов напряжения. На фиг. 1 их 4: три из них (а, б, с) менее продолжительны, а импульс длительность которого обозначена tс - более продолжительный и более стабильный. Возможность появления в сигнале с датчика дефектов при прохождении через датчик только одного дефектного участка нескольких импульсов обусловлено тем, что при перемещении провода и приближении передней границы дефекта изоляции к датчику дефектов коронный разряд может загораться, затем гаснуть, и через некоторое время загораться вновь.

Этот процесс наблюдается в результате ряда причин, таких как уровень напряжения на датчике, степень загрязнения провода, поперечные колебания провода и т.д. Еще одна из основных причин этого явления заключается в нестабильности появления в области датчика дефектов, при прохождение в зоне его действия дефектного участка изоляции, свободных электронов, инициирующих возникновения коронного разряда.

Определение количества дефектов в изоляции контролируемого провода в способе - прототипе осуществляют по количеству сигнальных импульсов напряжения, пришедших в счетчик количества дефектов с датчика дефектов. В способе - прототипе таких нестабильных зон при прохождении под датчиком одного дефектного участка может быть несколько. При этом каждый импульс напряжения в сигнале с датчика может быть ошибочно посчитан, как дефект. Поэтому во избежание погрешностей в определении количества дефектов в способе-прототипе формируют импульс дефекта, длительность (период) которого равняется ti. Принцип формирования длительности упомянутого импульса ti, описан в формуле способа - прототипа. Возникающую в способе-прототипе нестабильность из-за стохастического появления свободных электронов в газоразрядном промежутке можно устранить путем облучения воздушного газоразрядного промежутка вблизи датчика дефектов ионизирующего ультрафиолетового излучения. При ультрафиолетовом облучении с каждого дефектного участка изоляции провода с датчика дефектов формируется только один сигнал, длительность которого ti = tс.

Очень важным параметром контроля является значение напряжение на датчике дефектов. От уровня этого напряжения зависит чувствительность датчика к дефектам, а также величина систематической погрешности, которую вносит датчик в определение количества дефектов и их протяженность в процессе контроля. Под чувствительностью к дефектом будем понимать такой минимальный уровень напряжения на датчике дефектов, при котором любой точечный дефект в виде прокола изоляции будет обнаружен со 100% вероятностью. Обозначим это напряжение через Uр и назовем его рабочим напряжением датчика дефектов. Рассмотрим, как можно снизить напряжение контроля, изменив конструкцию датчика дефектов.

Известно, что коронный разряд воздухе зажигается тогда, когда напряженность поля достигает некоторого критического значения Екр≈30 кВ/см. В однородном поле такую напряженность электрического поля можно достичь при относительно высоких напряжениях, зависящих от расстояния между электродами. При расстояниях между электродами в несколько миллиметров это напряжение оценивается величиной в несколько киловольт. В резко неоднородных полях такую напряженность можно получить при напряжениях на порядки меньших. Так как провод (фиг.2) представляет собой круглое протяженное тело, покрытое изоляционной пленкой 7, движущееся относительно первичного преобразователя (коронирующего электрода 2), а дефект в изоляции 7 может находиться в любой точки поверхности этого тела, то для обеспечения одинаковости условий по обнаружению любого из дефектов, нужно, чтобы все точки поверхности провода были равноудалены от поверхности первичного преобразователя (датчика) дефектов, роль которого выполняют микронити 1. Для выполнения этого условия концы микронитей должны лежать на окружности диаметром D охватывая контролируемый провод диаметром d и удовлетворять условию d≤D≤ 1,2d. Это условие обусловлено стремлением к максимальному снижению напряжения контроля. Дело в том, что напряженность в области конца микронитей при любом постоянном напряжении зависит от двух факторов: от расстояния между концом микронити 1 и жилой контролируемого провода 8, и от коэффициента усиления поля, зависящего от геометрических размеров микронитей. При этом, как уменьшение упомянутого расстояния, так и уменьшение геометрических размеров микронитей, в частности их диаметра, приводит к возрастанию напряженности поля. Поэтому наименьшее расстояние между жилой провода и концами микронитей обеспечивается при D=d. При неизменном диаметре провода d увеличение величины D приводит к снижению напряженности поля в области вершин микронитей. Поэтому увеличивать величину D за пределы 1,2d нецелесообразно.

Величина абсолютной систематической погрешности при контроле протяженности дефектов зависит от зоны разрешения датчика, под которой следует понимать длину пути, пройденную точечным, пренебрежительно малым по протяженности дефектом в зоне датчика за интервал времени от момента зажигания, до момента погасания коронного разряда между датчиком и жилой провода в месте дефекта. Для определения этих двух величин нужно датчик дефектов откалибровать, что и отражено в заявляемом способе.

Рассмотрим сущность заявляемого способа по схеме, приведенной на рис. 3.

При протягивании контролируемого провода через датчик 11 скорости, последний выдает сигнал, частота которого пропорциональна скорости протягивания провода под датчиком. Этот сигнал поступает в формирователь 12 (рис. 3) импульсов, который является умножителем частоты. Обозначим период следования импульсов с умножителя частоты через Т1.

Если при скорости движения провода V, пропускать в счетчик 4 импульсы, частотой f1=, то за время одного периода сигнальных импульсов провод пройдет расстояние, принятое за протяженность эквивалентного точечного повреждения, равное по величине

lэ=V1×T1 (1).

При измерении скоростей протягивания провода в g раз пропорционально ей в g раз изменяется и частота импульсов эквивалентных точечных повреждений, что приводит к неизменности величины, определяемой по выражению (1).

Действительно, частота импульсов скорости изменяется пропорционально скорости провода Vпр

f= К1 Vпр (2),

где К1 - коэффициент пропорциональности, зависящий от конструкции датчика скорости.

За время одного периода индуцированного в датчике скорости напряжения, через датчик-электрод проходит участок провода длиной lэ, равный

lэ = Vпр × Тэ (3),

где Tэ=l/f – период импульсов в датчике скорости.

Как следует из выражения (3), величина lэ, не зависит от скорости движения провода. Приняв lэ за единицу измерения, можно определить какая длина провода прошла через датчик повреждений, если посчитать количество импульсов скорости n, подсчитанных в счетчике 14 (рис. 2) за время Т прохождения указанного отрезка провода через датчик-электрод 2.

l = n× lэ (4),

где li - длина отрезка провода, прошедшего через датчик; n - количество импульсов скорости за время Т прохождения через датчик провода участка провода протяженностью l.

Так как скорость движения провода V1, взятая для примера в 2 раза выше скорости V2, то частота импульсов скорости при этих скоростях также отличается в 2 раза. Однако и длительность импульса Т1i и Т2i, сформированного с дефекта одной и той же протяженности li при разных скоростях движения провода также будет различаться в два раза, но количество элементарных участков провода lэ, остается в обоих случаях одинаковым и равным n. При подходе передней границы дефектного участка изоляции провода датчик 13 точечных повреждений вырабатывает сигнал, включающий ключевое устройство 15, и на вход счетчика 16 с регулируемым коэффициентом пересчета поступают импульсы с формирователя 12 импульсов скорости.

Коэффициент пересчета в счетчике 16 устанавливают, исходя из размеров (зоны разрешения) датчика дефектов 13.

Зона разрешения датчика дефектов 13 зависит, в частности, от напряжения на датчике и присутствия или отсутствия в области газоразрядного промежутка ионизирующего ультрафиолетового излучения. Поэтому, для определения зоны разрешения (разрешающей способности датчика) первоначально нужно откалибровать датчик дефектов, и определить, при каком напряжении будет осуществляться контроль. Оптимальным напряжением контроля Uр, будет такое напряжение, при котором точечный дефект в виде прокола изоляции гарантированно, со 100% вероятностью будет зарегистрирован датчиком дефектов. Для определения величины упомянутого напряжения отбирается бездефектный участок провода и в его изоляции наносится точечный дефект, в виде прокола иглой изоляции до токопроводящей жилы провода. На датчик дефектов 13 подается напряжение от источника питания 19 такой величины, при котором коронный разряд при прохождении упомянутого дефектного участка изоляции провода гарантированно не зажигается. В процессе калибровки датчика многократно протягивают упомянутый дефектный участок изоляции 8 через датчик дефектов, непрерывно облучают газоразрядный промежуток датчика дефектов ультрафиолетовой подсветкой (фиг. 2 поз. 6), и при каждом очередном протягивании повышают напряжение на датчике 13. Эта процедура повторяется до тех пор, пока указанный точечный дефект не будет гарантированно зарегистрирован датчиком дефектов 13. Напряжение, при котором это произойдет и будет рабочим напряжением Uр датчика дефектов. Поскольку точечный дефект выполнен в виде прокола изоляции, то в первом приближении, можно считать, что этот дефект имеет пренебрежительно маленькую протяженность. Однако, при прохождении упомянутого пренебрежительно малого по протяженности дефекта через датчик дефектов на последнем возникнет импульс, длительностью tс, количество зарегистрированных за это время импульсов скорости k , приходящих на счетчик 14, и будет определять систематическую погрешность датчика Lp, величина которой будет равна Lp = k × lэ.

Коэффициент пересчета k в счетчике 16 устанавливают равным разнице между количеством n импульсов скорости, пришедшим на счетчик 14 и количеством импульсов ni, которые должны были пройти на него при известной длине дефекта. Определение коэффициента пересчета k и ведение счетчика 16 с регулируемым коэффициентом пересчета, позволяет исключить систематическую погрешность в определении протяженности дефектов, обусловленную конечными размерами датчика 13 дефектов и его разрешающей способностью.

Задним фронтом сигнала со счетчика 16 устанавливают триггер 17 в единичное состояние, а задним фронтом сигнала датчика дефектов 13 - в нулевое. На выходе триггера возникает импульс, длительность которого Ti определяется истинной протяженностью дефектного участка. При этом счетчик 16 с регулируемым коэффициентом пересчета подсчитывает импульсы скорости, количество которых пропорционально длине поврежденной изоляции.

Пример конкретного выполнения. По заявляемому способу осуществлялся контроль дефектности изоляции обмоточного провода марки ПЭТВ диаметром 0,8 мм, на установке, схема которой приведена на фиг. 3. В качестве датчика скорости 11 был использован фотоэлектрический преобразователь перемещений, а в качестве формирователя импульсов скорости 12 был использован умножитель частоты с коэффициентом умножения равном 10. С использованием этих двух блоков удалось обеспечить величину

Датчик дефектов был выполнен по схеме, изображенной на фиг. 2.

Медные микронити, диаметром 35 мкм, концы которых подтравливались (заострялись) в электролите, и зажимались крепежными винтами 9 между двумя медными кольцами, образующими коронирующий электрод 2. Наружный диаметр колец коронирующего электрода 2 был равен 20 мм, а внутренний диаметр был равен 8 мм. Толщина дисков, образующих коронирующий электрод 2 была равна 6 мм. В каждом из колец было выполнено по 6 радиальных проточек, равномерно распределенных по поверхности. При сжатии упомянутых колец крепежными винтами 9 эти проточки располагались лицевой частью друг к другу, образуя в коронирующем электроде 2 сквозные отверстия 3. Иглы 1 радиально и равномерно распределялись по окружности. Концы микронитей выступали от внутренней окружности электрода 2 в сторону центра колец на 3,55 мм, таким образом, что их концы лежали на окружности 10, диаметр которой D=0,9мм. Напротив каждого сквозного радиального отверстия в коронирующем электроде располагались ультрафиолетовые лампы vfhrb UV-Inspector 2000 [6]. Лампы 6 распределялись на внутренней поверхности диэлектрического кольца 5, выполненного из капролактама. Диэлектрическое кольцо 5 механически прикреплялась стяжками 4 к коронирующему электроду 2. При помощи заявляемого датчика осуществляли контроль изоляции провода диаметром d=0,8 мм. В изоляции провода был создан точечный дефект изоляции, путём её прокола до жилы провода.

Ультрафиолетовая подсветка существенно меняет структуру сигнала дефекта (см. фиг. 4).

С введением ультрафиолетовой подсветки из сигнала с датчика дефектов исчезают зоны нестабильности, связанные с возможными многократными загораниями и погасаниями разряда между датчиком и дефектом, при прохождении последнего через датчик. Время горения разряда tр становится стабильным и равным времени tс. Напряжения зажигания разряда в датчике, при прохождении через него дефекта при облучении ультрафиолетом снизилось до 150 Вольт, по сравнению с напряжением зажигания разряда в датчике - прототипе без ультрафиолетовой подсветки, где оно составляло 2 кВ.

Введение в датчик ультрафиолетового светодиодов 6 (фиг. 2) приводит к снижению напряжения контроля на датчике, и к значительному повышению стабильности сигнала с выхода датчика дефектов, при прохождении через него дефектного участка изоляции. Это происходит за счет того, что ультрафиолет ионизирует газ возле электродов - нитей коронирующего электрода 2 (фиг. 2), что снижает время запаздывания разряда и облегчает переход несамостоятельного разряда в самостоятельный. Сказанное наглядно подтверждают осциллограммы с датчика дефектов, приведенные на фиг. 1 и фиг. 4.

Перед контролем датчик дефектов 13 (фиг.3) предварительно калибровали. Для этого на бездефектном участке изоляции 8 отрезка провода наносили искусственный точечный дефект в виде прокола до токопроводящей жилы 7 провода, которую заземляли. Первоначально на датчик дефектов 13 подавали от регулируемого источника 19 постоянное напряжение величиной 50 В, и протягивали этот дефектный участок через датчик дефектов 13, облучая при этом газоразрядный промежуток ультрафиолетовым облучением (показано стрелками). При напряжении 100 В коронный разряд при прохождении через датчик дефектов 13 не зажигался. Напряжение от источника 19 на датчике 13 повышали, и дефектный участок изоляции при непрерывном ультрафиолетовом облучении газоразрядного промежутка, вновь протягивали через датчик дефектов 13. Эту процедуру осуществляли до тех пор, пока при прохождении дефектного участка провода в зоне датчика дефектов 13 не загорится стабильный коронный разряд. Это произошло при напряжении на датчике дефектов 13, равном 0,15 кВ. При зажигании коронного разряда между жилой провода 7 в месте дефекта и датчиком дефектов 13 формировали импульс дефекта, длительностью tс, и подсчитывали в счетчике 14 количество импульсов скорости k сгенерированных за время tс. Это количество оказалось равным k=80. Эту величину фиксировали и вносили, в качестве коэффициента пересчета в счетчик 6. После этой операции напряжение Uр=0,15 кВ, при котором зажигается упомянутый коронный разряд, принимали за рабочее напряжение, и контроль изоляции проводов осуществляли при упомянутой величине напряжения на датчике. В соответствии с заявляемым способом, при прохождении каждого дефектного участка изоляции через датчик дефектов должен был бы формироваться импульс дефекта длительностью ti и осуществлялся бы подсчёт количество ni сгенерированных импульсов скорости за упомянутое время ti. Протяженность li каждого дефекта следовало определять по формуле li = lэ (ni - k), где lэ - протяженность элементарного отрезка провода прошедшего через датчик дефектов за время одного сгенерированного импульса скорости.

Для определения характеристик контроля протяженности дефекта на бездефектном участке изоляции отрезка провода наносили дефект, протяженностью 0,5 мм. Участок провода с этим дефектом протягивали через датчик дефектов 2, непрерывно облучая газоразрядный промежуток ультрафиолетом 12 и регистрировали в счетчике 4 количество ni прошедших в него импульсов скорости за время tн (см. фиг.1) сигнального импульса с датчика дефектов 3. Величина ni оказалась равной ni=100. Протяженность li дефекта определи по формуле li = lэ (ni - k)=0,025 × (100-80)=0,5 мм.

Для сравнения проделывали аналогичные процедуры с датчиком дефектов, без ультрафиолетового облучения газоразрядного промежутка датчика дефектов 3, как это было в способе - прототипе. При этом было выявлено, что чувствительность к дефектам Uрпрот было равно Uрпрот=1,2 кВ, а коэффициент пересчета, определяющий зону разрешения датчика, был равен k=200. При рабочем напряжении Uрпрот=1,2 кВ и определении протяженности нанесенного дефекта, протяженностью 0,5 мм по способу-прототипу было подсчитано niпрот. =222 импульса. Величина li = lэ (ni - k)=0,025 × (222-200)=0,55 мм.

Таким образом, по сравнению с прототипом напряжение контроля в заявляемом способе было снижено в 8 раз, а разрешающая способность датчика улучшена в 2,5 раза.

Разрешающая способность датчика, используемого в заявляемом способе была уменьшена по сравнению с разрешающей способности датчика в способе – прототипе в 2,5 раз – с 5 мм до 2 мм.

Таким образом, заявляемый способ по сравнению со способом - прототипом позволил снизить напряжение контроля более чем в десять раз, и в 2,5 раза улучшил разрешающую способность.

Похожие патенты RU2737511C1

название год авторы номер документа
ДАТЧИК ДЛЯ НЕПРЕРЫВНОГО КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ПРОВОДОВ 2020
  • Смирнов Геннадий Васильевич
RU2735579C1
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ 2020
  • Смирнов Геннадий Васильевич
RU2737515C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ПРОВОДА 2020
  • Смирнов Геннадий Васильевич
RU2726729C1
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ 2021
  • Смирнов Геннадий Васильевич
RU2767959C1
СПОСОБ КОНТРОЛЯ И РЕМОНТА ИЗОЛЯЦИИ ПРОВОДОВ 2012
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2506601C1
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ПРОВОДА 2021
  • Смирнов Геннадий Васильевич
RU2771480C1
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ 2021
  • Смирнов Геннадий Васильевич
RU2762300C1
ДАТЧИК ДЛЯ НЕПРЕРЫВНОГО КОНТРОЛЯ ИЗОЛЯЦИИ ПРОВОДОВ 2016
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2631020C1
СПОСОБ КОНТРОЛЯ И РЕМОНТА ИЗОЛЯЦИИ ПРОВОДОВ 2012
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2506602C1
СПОСОБ КОНТРОЛЯ И РЕМОНТА ИЗОЛЯЦИИ ПРОВОДОВ 2016
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2642499C1

Иллюстрации к изобретению RU 2 737 511 C1

Реферат патента 2020 года СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ

Изобретение относится к контрольно-измерительной технике, и может быть использовано, например, при контроле дефектности изоляции обмоточных проводов. Новым является то, что в способе контроля дефектности изоляции обмоточных проводов, заключающемся в подаче напряжения на датчик дефектов, и в формировании импульсов дефектов, длительность Ti которых определяется временем горения разряда между жилой провода и электродами датчика дефектов при прохождении дефектного участка изоляции провода в активной зоне датчика дефектов, в процессе контроля в области датчика инициируют высокую напряженность электрического поля, путем создания в упомянутой области резко неоднородного поля, для чего датчик дефектов выполняют в виде кольца, по внутренней окружности которого радиально и равномерно располагают электропроводные микронити, оси которых направлены перпендикулярно оси контролируемого провода, при этом концы микронитей располагают по окружности охватывающей контролируемый проводник таким образом, чтобы они лежали на окружности, диаметр D которой связан с диаметром контролируемого провода d соотношением d ≤ D ≤ 1,2d, в процессе контроля непрерывно генерируют импульсы, частоту следования которых изменяют прямо пропорционально скорости движения провода, при этом воздушное пространство в области датчика дефектов непрерывно облучают ультрафиолетовым излучением, датчик дефектов перед контролем предварительно калибруют, для чего на бездефектном участке изоляции провода наносят искусственный точечный дефект в виде прокола до токопроводящей жилы провода, после чего указанный участок провода многократно протягивают через датчик дефектов и при каждом последующем протягивании напряжение на датчике повышают по сравнению с предыдущим протягиванием, эту процедуру осуществляют до тех пор пока при прохождении дефектного участка провода в зоне датчика дефектов не загорится коронный разряд, при зажигании которого формируют импульс дефекта, длительностью tс, и подсчитывают количество импульсов скорости k сгенерированных за время tс, после чего напряжение Uр, при котором зажигается упомянутый коронный разряд, принимают за рабочее напряжение, и контроль изоляции проводов осуществляют при упомянутой величине напряжения на датчике, причём при прохождении каждого дефектного участка изоляции через датчик дефектов, формируют импульс дефекта длительностью ti и подсчитывают количество ni сгенерированных импульсов скорости за упомянутое время ti, и протяженность li каждого дефекта определяют по формуле li = lэ (ni - k), где lэ - протяженность элементарного отрезка провода, прошедшего через датчик дефектов за время одного сгенерированного импульса скорости. Технический результат при реализации заявленного решения заключается в снижении напряжения контроля и повышение точности контроля протяженности дефектов. 4 ил.

Формула изобретения RU 2 737 511 C1

Способ контроля дефектности изоляции провода заключается в подаче напряжения на датчик дефектов, и в формировании импульсов дефектов, длительность Ti которых определяется временем горения разряда между жилой провода и электродами датчика дефектов при прохождении дефектного участка изоляции провода в активной зоне датчика дефектов, отличающийся тем, что в процессе контроля в области датчика инициируют высокую напряженность электрического поля, путем создания в упомянутой области резко неоднородного поля, для чего датчик дефектов выполняют в виде кольца, по внутренней окружности которого радиально и равномерно располагают электропроводные микронити, оси которых направлены перпендикулярно оси контролируемого провода, при этом концы микронитей располагают по окружности, охватывающей контролируемый проводник таким образом, чтобы они лежали на окружности, диаметр D которой связан с диаметром контролируемого провода d соотношением d ≤ D ≤ 1,2d, при этом в процессе контроля непрерывно генерируют импульсы, частоту следования которых изменяют прямо пропорционально скорости движения провода, причем воздушное пространство в области датчика дефектов непрерывно облучают ультрафиолетовым излучением, датчик дефектов перед контролем предварительно калибруют, для чего на бездефектном участке изоляции провода наносят искусственный точечный дефект в виде прокола до токопроводящей жилы провода, после чего указанный участок провода многократно протягивают через датчик дефектов и при каждом последующем протягивании напряжение на датчике повышают по сравнению с предыдущим протягиванием, эту процедуру осуществляют до тех пор пока при прохождении дефектного участка провода в зоне датчика дефектов не загорится коронный разряд, при зажигании которого формируют импульс дефекта, длительностью tс, и подсчитывают количество импульсов скорости k сгенерированных за время tс, после чего напряжение Uр, при котором зажигается упомянутый коронный разряд, принимают за рабочее напряжение, и контроль изоляции проводов осуществляют при упомянутой величине напряжения на датчике, причём при прохождении каждого дефектного участка изоляции через датчик дефектов формируют импульс дефекта длительностью ti и подсчитывают количество ni сгенерированных импульсов скорости за упомянутое время ti, и протяженность li каждого дефекта определяют по формуле li = lэ (ni - k), где lэ – протяженность элементарного отрезка провода, прошедшего через датчик дефектов за время одного сгенерированного импульса скорости.

Документы, цитированные в отчете о поиске Патент 2020 года RU2737511C1

СПОСОБ КОНТРОЛЯ И РЕМОНТА ИЗОЛЯЦИИ ПРОВОДОВ 2016
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2642499C1
Способ контроля дефектности изоляции провода и устройство для его осуществления 1989
  • Смирнов Геннадий Васильевич
  • Косенчук Николай Александрович
  • Хабаров Михаил Васильевич
SU1786414A1
СПОСОБ КОНТРОЛЯ И РЕМОНТА ИЗОЛЯЦИИ ПРОВОДОВ 2016
  • Смирнов Геннадий Васильевич
  • Смирнов Дмитрий Геннадьевич
RU2642499C1
Устройство для автоматизации рабочего цикла универсального сверлильного станка 1960
  • Агафонов А.А.
SU139574A1
JP 2010204067 A, 16.09.2010.

RU 2 737 511 C1

Авторы

Смирнов Геннадий Васильевич

Даты

2020-12-01Публикация

2020-04-07Подача