Изобретение относится к медицине, а именно к онкоскринингу, и может быть использовано для неинвазивной доклинической диагностики онкологических заболеваний и облигатных форм предраковых заболеваний по слюне, а также для оценки прогноза перехода необлигатных форм предраковых заболеваний в рак и мониторинга динамики объективного состояния здоровья пациента, подвергшегося лечению. Для этого проводят исследование биологической жидкости пациента (слюна) методом МАН, определяют гидродинамический радиус частиц и их вклад в светорассеивание, и диагностируют заболевание по значению совокупного диагностического показателя. При этом в качестве совокупного диагностического показателя МАН используется размер частиц от 1 до 25 нм при их вкладе в светорассеивание до 35% - практическое здоровье, от 36% до 55% - облигатный предрак, от 56% до 90% - злокачественное новообразование. Изобретение обеспечивает раннюю неинвазивную диагностику онкологических заболеваний за 12 месяцев до появления клинических симптомов болезни при наличии вышеописанных объективных изменений в субфракционном составе РГС.
В настоящее время в общемедицинской и клинической практике до сих пор достаточно широко применяется общий анализ крови, в структуру которого входит измерение скорости осаждения эритроцитов (СОЭ), высокая чувствительность которого базируется на изменении пространственной структуры белков плазмы крови при различных заболеваниях и состояниях, включая преимущественно воспалительные и онкологические нозологические формы. Используемый метод капиллярного измерения скорости осаждения эритроцитов за 1 час дает косвенную информацию о патогенезе заболевании, содержащуюся в гидродинамическом размере белковых структур плазмы крови.
Из уровня техники известен способ диагностики онкологических заболеваний путем исследования слабого водного раствора нативной плазмы или нативной сыворотки крови пациента методом ЛКС [патент RU 2132635, 07.10.1999, А61В 5/00].
Известен способ диагностики онкологических заболеваний [патент RU2219549, 30.09.2002, G01N 33/52, G01N 33/49], включающий исследование методом ЛКС двух слабых водных растворов нативной плазмы или нативной сыворотки крови пациента, в один из которых добавляют щелочь, а в другой - кислоту.
Известен способ диагностики онкологических заболеваний [патент RU2276786, 24.01.2005, G01N 33/48], включающий последовательное исследование методом ЛКС трех слабых водных растворов нативной плазмы или нативной сыворотки крови пациента, при этом в один из растворов добавляют щелочь, в другой - кислоту, а третий свободный от щелочи и кислоты подвергают СВЧ-воздействию.
Наиболее близким по технической сущности, достигаемому эффекту к заявляемому способу и выбранным в качестве прототипа является техническое решение «Неинвазивный способ лазерной нанодиагностики онкологических заболеваний» RU2542427C2 МПК:G01N21/47, дата приоритета 03.12.2013.
Общими недостатками данных способов являются трудоемкость их осуществления, невысокие точность и экспрессность способа, их инвазивность и биологическая опасность (т.е. при работе с кровью и ее компонентами необходимо использование труда квалифицированных медработников и соблюдение мер безопасности для обеспечения профилактики заболеваний, передающихся через кровь), а также сложность в подготовке образцов к исследованию, что делает вышеуказанные способы непригодными для скрининга и массового обследования населения.
Задачей настоящего изобретения является создание неинвазивного и точного способа нанодиагностики и прогнозирования онкологических заболеваний.
Результатом изобретения является выявление количественных характеристик частиц РГС, характерных для облигатных форм предрака и злокачественных новообразований, а также прогностическая ценность (вероятность детекции рака при канцерогенезе за 12 месяцев до появления первых клинических признаков заболевания) и возможность использования метода для мониторинга объективного статуса пациентов, получающих комплексное лечение.
Заявленный результат достигается следующим образом.
Способ прогноза малигнизации и ранней диагностики злокачественных опухолей, характеризуется тем, что:
- осуществляют забор образца ротоглоточных смывов (РГС) у пациента;
- центрифугируют исследуемый образец 15-20 минут со скоростью 2000-3000 об/мин;
- получают надосадочный слой центрифугированного образца РГС и измеряют гидродинамический радиус глобул и их процентный вклад в светорассеивание в исследуемом образце с помощью монохроматического анализатора наночастиц (МАН);
- при обнаружении в РГС наночастиц с гидродинамическими радиусами от 1 до 25 нм при вкладе в светорассеивание от 35% до 55% прогнозируют процесс малигнизации, при обнаружении в РГС наночастиц с гидродинамическими радиусами 1-25 нм при их относительном вкладе в светорассеивание более 55% диагностируют злокачественные новообразования.
- по изменению процентного вклада в светорассеяние в течение 6-12 месяцев судят о положительной или отрицательной динамике состояния пациента.
При этом, РГС собираются натощак через 3-4 часа после последнего приема пищи. Перед взятием смывов из ротоглотки проводят предварительное полоскание полости рта водой. После этого проводят тщательное полоскание ротоглотки (в течение 10-15 секунд) 25-40 мл изотонического раствора натрия хлорида. Жидкость собирают через воронку в флакон на 50 мл. Хранение образцов РГС осуществляют при комнатной температуре - в течение 6 ч., при температуре от 2°С до 8°С - в течение 3 суток, при температуре минус 20°С - в течение 1 недели, при температуре минус 70°С - длительно. Проводят исследование РГС монохроматическим анализатором наночастиц в широком диапазоне размеров наночастиц - от 1,0 нм до 10000 нм динамическим светорассеянием биения света на обратном рассеянии с анализом спектральной плотности мощности допплеровских сдвигов, порождаемых броуновским движением наночастиц дисперсной фазы. Система МАН применима для исследования РГС и других биологических жидкостей организма человека в растворах в пределах диапазона частиц размером от 1,0 до 10000 нм. Минимум образца - 1 мл. Применяется принцип гетеродинного обратного отражения, характеризуется высоким разрешением в нанодиапазоне. Образцы слюны с высокой концентрацией наночастиц могут быть измерены без искажений из-за эффекта многократного отражения. Возможно измерение образцов РГС с высокой и низкой концентрациями без предварительного разбавления. Кроме распределения частиц по размерам определяется относительный вклад в рассеяние света разных фракций.
Предлагаемый способ может быть применен в условиях массовых медицинский осмотров населения в клинико-лабораторных центрах, оборудованных МАН, адаптированным к задачам исследования минимизированных объемов РГС.
Заявляемый способ позволяет выявить и оценить изменения в системе гомеостаза, обеспечивая при этом высокую точность, экспрессность и невозмущающий исследуемую систему характер измерений. Исследования выполняются с минимальным объемом РГС, препаративная подготовка которой обеспечивает сохранение уникальной нативной структуры ее частиц, с быстрой регистрацией математически обработанных результатов. Выявившиеся после длительных наблюдений значения такого диагностического показателя, как гидродинамический радиус частиц РГС и соотношение количества частиц различного размера в составе РГС, позволяют с большой степенью достоверности осуществлять равную диагностику облигатных форм предрака (хронический атрофический гастрит, полипов сигмовидной и прямой кишок, фиброаденоматоз, множественные полипы желудка и др.) и злокачественных новообразований.
Заявляемый способ осуществляют следующим образом.
Смыв из ротоглотки забирают натощак не ранее чем через 3-4 часа после последнего приема пищи. Перед взятием смывов из ротоглотки проводят предварительное полоскание полости рта водой. После этого проводят тщательное полоскание ротоглотки (в течение 10-15 секунд) 25-40 мл изотонического раствора натрия хлорида. Жидкость собирают через воронку в флакон на 50 мл., содержимое которого вносят в 3 объема физиологического раствора, помещенных в пластмассовую коническую центрифужную пробирку типа "Эппендорф" объемом 0,7 мл. Образец центрифугируют 5 мин при 2500 об/мин и из надосадочной жидкости отбирают 100 мкл, которые переносят в чистую пробирку того же типа с герметически закрывающейся пластмассовой крышкой. Все перечисленные процедуры проводят при комнатной температуре. Отработанный образец разведенной РГС подвергают исследованию на лазерном корреляционном спектрометре или замораживают в морозильной камере холодильника и в таком виде хранят до момента исследования. Перед измерением однократно замороженный образец инкубируют при комнатной температуре в течение 15-20 мин (до полного оттаивания), добавляют 0,3-0,4 мл физиологического раствора, тщательно перемешивают, центрифугируют на настольной центрифуге при 2500 об/мин в течение 15 минут. Затем отбирают надосадочную жидкость и помещают ее в измерительную кювету спектрометра. Накопление спектра проводят в течение 8 мин (до 800 000 накоплений). На основе сравнения полученного распределения частиц по размерам с эталонным банком данных с хорошей статистической достоверностью определяется принадлежность данной пробы к тому или иному виду (предрак или злокачественное новообразование) заболевания.
При определении в РГС наличия частиц с гидродинамическими радиусами 1-25 нм в соотношении 35-55% у обследуемого прогнозируют процесс малигнизации. При определении наличия этих частиц 56%-90% у обследуемого человека диагностируют злокачественные новообразования. При определении других соотношений этих частиц делают вывод об отсутствии данных заболеваний.
Пример 1.
Больная Р., 35 лет. Диагноз: рак молочной железы, III стадия онкологического процесса, метастазы в регионарных лимфоузлах, отдаленные метастазы.
Вклад в состав РГС частиц мелкой фракции составил 68%, что свидетельствовало о наличии онкологического процесса. Результаты цитологического исследования биопсийного материала подтвердили диагноз.
Пример 2.
Больной М., 36 лет. Диагноз: центральный рак верхней доли легкого, III стадия онкологического процесса, метастазы в местных лимфоузлах, отсутствие отдаленных метастазов.
Вклад в состав РГС частиц мелкой фракции составил 76%, что свидетельствовало о наличии онкологического процесса. Результаты цитологического исследования биопсийного материала подтвердили диагноз.
Пример 3.
Больная Ф., 70 лет. Диагноз: хронический полипоз сигмовидной кишки.
Вклад в состав РГС частиц мелкой фракции составил 49%, что свидетельствовало о наличии предракового процесса. Результаты цитологического исследования биопсийного материала подтвердили диагноз.
Пример 4.
Больной К., хронический гастрит.
Вклад в состав РГС частиц мелкой фракции составил 29%, что свидетельствовало относительно прогноза по канцерогенезу. Через 12 месяцев после проведенного дообследования выявлен предраковый процесс (атрофический гастрит, полипоз слизистой оболочки желудка, который через 6 месяцев малигнизировался в рак желудка. Результаты цитологического исследования биопсийного материала подтвердили диагноз.
Пример 5.
Больной Е., состояние после радикальной операции по поводу РПЖ (рак предстательной железы).
Вклад в состав РГС частиц мелкой фракции составил 67%, что указывало на наличие онкозаболевания. Через 8 месяцев после проведенного хирургического вмешательства вклад в светорассеивание снизился до 23%, что свидетельствовало о радикальности лечения и отсутствия метастатического поражения. Результаты комплексного обследования подтвердили данное заключение.
Таким образом, заявляемый способ позволяет за счет выявления значения диагностического показателя обеспечить раннюю достоверную диагностику рака и предрака, дать оценку прогноза по малигнизации за 12 месяцев до ее возникновения, осуществить мониторинг состояния пациента в динамике на фоне лечения, что имеет принципиальное значение для повышения эффективности лечения онкологических заболеваний и формирования групп повышенного онкологического риска в отношении них.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ОБЛИГАТНЫХ ФОРМ ПРЕДРАКА И ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ | 1996 |
|
RU2105306C1 |
СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКОГО ЗАБОЛЕВАНИЯ У КОШЕК И СОБАК | 2010 |
|
RU2480748C2 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ЗЛОКАЧЕСТВЕННОЙ ТРАНСФОРМАЦИИ ЭРОЗИВНО-ЯЗВЕННОЙ ФОРМЫ КРАСНОГО ПЛОСКОГО ЛИШАЯ СЛИЗИСТОЙ ОБОЛОЧКИ ПОЛОСТИ РТА | 2015 |
|
RU2580222C1 |
Способ комбинированной эндоскопической диагностики хронических воспалительных и предраковых процессов и первичных раков ротоглотки | 2023 |
|
RU2819641C1 |
СПОСОБ ДИАГНОСТИКИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ | 1996 |
|
RU2117289C1 |
Способ определения риска злокачественной трансформации эпителиальных клеток гортани у больных предопухолевыми заболеваниями гортани | 2022 |
|
RU2803858C1 |
СПОСОБ ИНДИВИДУАЛЬНОГО ПРОГНОЗИРОВАНИЯ ИСХОДОВ ЛЕЧЕНИЯ У БОЛЬНЫХ МЕСТНО-РАСПРОСТРАНЕННЫМИ ЗЛОКАЧЕСТВЕННЫМИ ОПУХОЛЯМИ ОРОФАРИНГЕАЛЬНОЙ ЗОНЫ | 2008 |
|
RU2371724C1 |
НЕИНВАЗИВНЫЙ СПОСОБ ЛАЗЕРНОЙ НАНОДИАГНОСТИКИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ | 2013 |
|
RU2542427C2 |
Способ определения метастатического потенциала опухолевых новообразований | 2022 |
|
RU2802213C1 |
Способ диагностики риска злокачественного роста | 2016 |
|
RU2651753C1 |
Изобретение относится к медицине и касается способа прогноза малигнизации и ранней диагностики злокачественных опухолей, характеризующегося тем, что осуществляют забор образца ротоглоточных смывов (РГС) у пациента; центрифугируют исследуемый образец 15-20 мин со скоростью 2000-3000 об/мин; получают надосадочный слой центрифугированного образца РГС и измеряют гидродинамический радиус глобул и их процентный вклад в светорассеивание в исследуемом образце с помощью монохроматического анализатора наночастиц (МАН); при обнаружении в РГС наночастиц с гидродинамическими радиусами от 1 до 25 нм при вкладе в светорассеивание от 35 до 55% прогнозируют процесс малигнизации, при обнаружении в РГС наночастиц с гидродинамическими радиусами 1-25 нм при их относительном вкладе в светорассеивание более 55% диагностируют злокачественные новообразования; по изменению процентного вклада в светорассеяние в течение 6-12 месяцев судят о положительной или отрицательной динамике состояния пациента. Изобретение обеспечивает выявление количественных характеристик частиц РГС, характерных для облигатных форм предрака и злокачественных новообразований, а также детекцию рака при канцерогенезе за 12 месяцев до появления первых клинических признаков заболевания и возможность мониторинга объективного статуса пациентов, получающих комплексное лечение. 3 з.п. ф-лы, 5 пр.
1. Способ прогноза малигнизации и ранней диагностики злокачественных опухолей, характеризующийся тем, что:
- осуществляют забор образца ротоглоточных смывов (РГС) у пациента;
- центрифугируют исследуемый образец 15-20 мин со скоростью 2000-3000 об/мин;
- получают надосадочный слой центрифугированного образца РГС и измеряют гидродинамический радиус глобул и их процентный вклад в светорассеивание в исследуемом образце с помощью монохроматического анализатора наночастиц (МАН);
- при обнаружении в РГС наночастиц с гидродинамическими радиусами от 1 до 25 нм при вкладе в светорассеивание от 35 до 55% прогнозируют процесс малигнизации, при обнаружении в РГС наночастиц с гидродинамическими радиусами 1-25 нм при их относительном вкладе в светорассеивание более 55% диагностируют злокачественные новообразования;
- по изменению процентного вклада в светорассеяние в течение 6-12 месяцев судят о положительной или отрицательной динамике состояния пациента.
2. Способ по п. 1, характеризующийся тем, что после забора образца его помещают в морозильную камеру при температуре от -18 до -25°C и в таком виде хранят до момента исследования.
3. Способ по п. 1, характеризующийся тем, что однократно замороженный образец инкубируют при комнатной температуре в течение 15-20 мин до полного оттаивания, добавляют 0,3-0,4 мл физиологического раствора, тщательно перемешивают, центрифугируют на настольной центрифуге при 2500 об/мин в течение 15 мин.
4. Способ по п. 1, характеризующийся тем, что надосадочную жидкость помещают в измерительную кювету спектрометра, а накопление спектра проводят в течение 8 мин до 800000 накоплений.
US 2007141582 A1, 21.06.2007 | |||
Способ ранней диагностики заболеваний путем оптического измерения физических характеристик нативной биологической жидкости | 2015 |
|
RU2622761C2 |
CN 105181422 A, 23.12.2015 | |||
ISAAC A | |||
et al | |||
Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs | |||
J Otolaryngol Head Neck Surg | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
MUTHU K | |||
et al | |||
Oropharyngeal flora changes in patients with head and |
Авторы
Даты
2020-12-14—Публикация
2020-09-18—Подача