Способ получения монооксида углерода из лигнина гидролизного под действием CO Российский патент 2021 года по МПК C01B32/40 B01J23/745 B01J23/75 C10B49/00 

Описание патента на изобретение RU2741006C1

Область техники

Изобретение относится к способу получения монооксида углерода (СО) из гидролизного лигнина, с нанесенным на поверхность лигнина катализатором, содержащим железо (Fe) или кобальт (Со), под действием диоксида углерода (СО2). Изобретение может использоваться для переработки биомассы, а также в технологии переработки газового сырья, содержащего СО2.

Уровень техники

В изобретении RU 2409539 С1 от 20.01.2011 описан способ переработки лигнина в жидкие и газообразные углеводороды и их производные, заключающийся в том, что в качестве лигнина используют нерастворимый влажный гидролизный лигнин, который в присутствии катализатора - солей благородных металлов - обрабатывают одновременно водой, спиртами и водородом, при его начальном давлении 10-20 атм в автоклаве, при нагревании до 250-350°С, вследствие чего создаются суб- или суперкритические условия при давлении 60-90 атм, а отделение жидких углеводородов от твердого остатка достигают фильтрованием.

Недостатком данного способа является необходимость проводить процесс при очень высоких давлениях, а также использование в катализаторах благородных металлов, что заметно удорожает весь процесс.

В изобретении RU 2464295 С2 от 20.10.2012 описан способ термохимической переработки биомассы, где в качестве биомассы используют древесные опилки, щепу с размером фракций 2-15 мм, или древесную муку с размером частиц не более 0,15 мм. Процесс пиролиза осуществляют при температур 600-1100°С и давлениях 0.1-10 МПа при вводе в реактор теплоносителя на основе нагретых до температуры пиролиза газообразных продуктов, в качестве которых используют отводимый из циркулирующего потока синтез-газ, в который дополнительно добавляют пары воды и/или СО2. Получаемый синтез-газ содержит побочные газообразные продукты пиролиза (Н2О, СО2, СН4 и др.).

Недостатком данного способа является необходимость проводить процесс при достаточно высоких температурах и при повышенном давлении, а также наличие в продуктах реакции нежелательных побочных продуктов.

Наиболее близким к настоящему изобретению является патент RU 2675864 С1 от 25.12.2018 описывающий многостадийный способ пиролитической конверсии растительной биомассы с получением синтез-газа. Способ осуществляют путем прохождения перерабатываемой биомассы стадии пиролиза в секции, нагреваемой до температуры 600°С, а выделяющиеся в процессе термического распада биомассы летучие продукты пиролиза фильтруются через образовавшийся на стадии пиролиза угольный остаток во второй независимо нагреваемой секции при температуре 1000°С. При этом перед направлением в устройство для термической конверсии в монооксид углерода и водород биомасса подвергается низкотемпературному пиролизу при температуре в диапазоне 200-350°С.

Основным недостатком данного способа является многостадийность процесса, сложное аппаратурное оформление и необходимость проводить процесс при достаточно высоких температурах до 1000°С, что усложняет и удорожает процесс.

Предлагаемый в настоящем патенте одностадийный способ переработки гидролизного лигнина под действием диоксида углерода в присутствии нанесенного на поверхность лигнина катализатора обладает несомненным преимуществом.

Раскрытие изобретения

Технической задачей настоящего изобретения является создание способа переработки биомассы (лигнина гидролизного) в монооксид углерода при атмосферном давлении, обеспечивающего высокую конверсию углекислого газа и высокую селективность по образующемуся СО при полном отсутствии метана в продуктах реакции, позволяющего сильно упростить технологию процесса и снизить энергозатраты.

Техническим результатом предлагаемого изобретения является создание способа получения монооксида углерода из гидролизного лигнина под действием диоксида углерода, позволяющего повысить селективность по монооксиду углерода до 100% и конверсию диоксида углерода до 70%, при одновременном упрощении технологии процесса и снижении энергетических затрат. Предлагаемый способ также обеспечивает утилизацию парникового газа СО2, что является преимуществом по сравнению с известными способами переработки гидролизного лигнина.

Для достижения технического результата предложен способ получения монооксида углерода из гидролизного лигнина, включающий контактирование при температуре 500-800°С гидролизного лигнина с СО2, при объемной скорости подачи СО2 в реактор 900 ч-1, в присутствии железного или кобальтового катализатора, представляющего собой железо или кобальт, нанесенный на поверхность гидролизного лигнина методом пропитки по влагоемкости раствором нитрата соответствующего металла, причем, в качестве подложки катализатора используется гидролизный лигнин, непосредственно принимающий участие в реакции.

Изобретение подтверждается чертежами, где на фиг. 1 показаны для исходного образца лигнина и образца лигнина с 7 масс.% Fe конверсии СО2, полученные в температурном диапазоне 100-800°С; на фиг. 2 показаны конверсии СО2 для образцов лигнина с масс. содержанием Fe 1, 3, 5 и 7% соответственно; на фиг. 3 показаны для исходного образца лигнина и образца лигнина с 7 масс. % Со конверсии СО2, полученные в температурном диапазоне 100-800°С; на фиг. 4 показаны конверсии СО2 для образцов лигнина с масс. содержанием Со 1, 3, 5 и 7% соответственно.

Катализатор содержит соединения переходных металлов (Fe или Со), позволяющими существенно повысить конверсию углекислого газа в монооксид углерода в температурном диапазоне 500-800°С. Главными преимуществами данного метода является переработка углеродного материала (гидролизного лигнина), являющего невостребованным побочным продуктом при производстве бумаги из древесины, а также утилизация СО2, который является парниковым газом.

Для нанесения Fe или Со на поверхность гидролизного лигнина использовали метод пропитки раствором нитрата соответствующего металла с концентрацией, необходимой для получения требуемого содержания металла на поверхности (1, 3, 5, 7 масс. %) по влагоемкости. Образцы высушивали при температуре 25°С в течение суток.

Навеску гидролизного лигнина с катализатором массой 1 г с фракцией 0,25-0,5 мм загружали в кварцевый проточный реактор с неподвижным слоем с внутренним диаметром 5 мм. Поток диоксида углерода в реактор регулировался расходомером El-Flow Bronkhost и составлял 30 мл/мин при давлении 1 атм. On-line анализ газовых продуктов реакции осуществлялся при помощи хроматографа Хроматэк-Кристалл 5000 с детектором по теплопроводности и колонкой М ss316 3 м*2 мм, Hayesep Q 80/100 меш. Все процессы проводили при атмосферном давлении и при температурах 100-800°С.

Пример 1. Использование соединений железа как катализатора в реакции углекислотной конверсии гидролизного лигнина

Для пропитки лигнина использовали раствор нитрата железа (III) нонагидрата фирмы Sigma Aldrich. Конверсия углекислого газа в монооксид углерода рассчитывалась по формуле:

Где n(СО) и n(СО2) - количества веществ (пропорциональны интегральной интенсивности соответствующих хроматографических пиков) монооксида углерода и диоксида углерода соответственно.

При сравнении конверсии СО2 гидролизного лигнина с 7% масс. Fe нанесенного катализатора с конверсией исходного образца гидролизного лигнина без катализатора видно, что конверсия возросла почти в 2 раза (с 36 до 70%) при температуре 800°С. Характер зависимости конверсии СО2 от температуры имеет явно нелинейный характер, при увеличении температуры можно добиться еще большего выигрыша от использования катализатора в данном процессе.

При нанесенных 5 массовых процентах железа на поверхность гидролизного лигнина была достигнута конверсия близкая с конверсией для 7 массовых процентов. Отсюда можно сделать вывод о том, что реакция принимает почти нулевой порядок по соединению железа начиная с 5 массовых процентов нанесения.

Пример 2. Использование соединений кобальта как катализатора в реакции углекислотной конверсии гидролизного лигнина

Для пропитки лигнина использовали раствор нитрата кобальта (II) гексагидрата фирмы Sigma Aldrich. Конверсия углекислого газа в монооксид углерода рассчитывалась по формуле:

где n(СО) и n(СО2) - количества веществ (пропорциональны интегральной интенсивности соответствующих хроматографических пиков) монооксида углерода и диоксида углерода соответственно.

Использование соединений кобальта, нанесенных предложенным методом, позволили значительно увеличить конверсию углекислого газа в монооксид углерода с 36 до 63,7% при температуре 800°С.

При рассмотрении конверсии углекислого газа в монооксид углерода с различными массовыми долями нанесенного кобальта можно отметить значительное увеличение конверсии при увеличении процента нанесении соединений металла непосредственно на поверхность лигнина.

При проведении процесса при относительно низких температурах 200-450°С продукт газификации лигнина содержит монооксид углерода и небольшие примеси метана (в пределах 3-5% мольных). При более высоких температурах метан не наблюдается и селективность по монооксиду углерода приближается к 100%.

Таким образом, преимуществом данного изобретения является увеличение конверсии углекислого газа в моноокисд углерода при газификации углеродного материала (гидролизного лигнина) посредством использования катализаторов - соединений переходных металлов железа или кобальта.

Похожие патенты RU2741006C1

название год авторы номер документа
Способ получения синтез-газа из CO 2017
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2660139C1
Способ получения синтез-газа из CO 2017
  • Евдокименко Николай Дмитриевич
  • Кустов Александр Леонидович
  • Ким Константин Олегович
  • Аймалетдинов Тимур Рашидович
  • Кустов Леонид Модестович
RU2668863C1
СПОСОБ ПЕРЕРАБОТКИ БИОМАССЫ В СИНТЕЗ-ГАЗ 2015
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2590565C1
Способ получения катализатора и способ гидрогенизационной конверсии диоксида углерода в жидкие углеводороды с его использованием 2016
  • Тарасов Андрей Леонидович
  • Исаева Вера Ильинична
  • Кустов Леонид Модестович
RU2622293C1
СПОСОБ И КАТАЛИЗАТОР ГИДРИРОВАНИЯ ОКСИДОВ УГЛЕРОДА 2006
  • Кристенсен Клаус Хвиид
  • Андерссон Мартин
  • Кустов Аркадий
  • Йоханнессен Туэ
  • Блигаард Томас
  • Ларсен Каспер Е.
  • Нерсков Йенс К.
  • Зеестед Йенс
RU2409878C2
СПОСОБ ПЕРЕРАБОТКИ ЛИГНИНА В ЖИДКИЕ УГЛЕВОДОРОДЫ 2015
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2573405C1
Катализатор для селективного гидрирования диоксида углерода с получением метанола 2023
  • Кустов Александр Леонидович
  • Прибытков Петр Вадимович
  • Тедеева Марина Анатольевна
  • Кустов Леонид Модестович
  • Шаталов Алексей Николаевич
  • Соловьев Валерий Владимирович
RU2804195C1
КАТАЛИЗАТОР ДЛЯ ИЗБИРАТЕЛЬНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА В СМЕСИ С АММИАКОМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2013
  • Кириченко Ольга Алексеевна
  • Редина Елена Андреевна
  • Давшан Николай Алексеевич
  • Кустов Леонид Модестович
RU2515529C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ ДИОКСИДА СЕРЫ 2008
  • Яшник Светлана Анатольевна
  • Исмагилов Зинфер Ришатович
  • Хайрулин Сергей Рифович
  • Илюхин Игорь Викторович
  • Пармон Валентин Николаевич
RU2372986C1
Способ получения синтез-газа из CO 2016
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2632701C1

Иллюстрации к изобретению RU 2 741 006 C1

Реферат патента 2021 года Способ получения монооксида углерода из лигнина гидролизного под действием CO

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО2 в реактор 900 ч-1, в присутствии железного или кобальтового катализатора, представляющего собой железо или кобальт, нанесенный на поверхность лигнина методом пропитки по влагоемкости раствором нитрата соответствующего металла, причем в качестве подложки катализатора используется лигнин, непосредственно принимающий участие в реакции. При данном способе предварительная активация катализатора не требуется. При селективности по СО, достигающей 100%, конверсия СО2 доходит до 70% при температуре 800°С на катализаторе, содержащем 5 масс.% Fe. 2 пр., 4 ил.

Формула изобретения RU 2 741 006 C1

Способ получения монооксида углерода из гидролизного лигнина, включающий контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО2 в реактор 900 ч-1, в присутствии железного или кобальтового катализатора, представляющего собой железо или кобальт, нанесенный на поверхность лигнина методом пропитки по влагоемкости раствором нитрата соответствующего металла, причем в качестве подложки катализатора используется лигнин, непосредственно принимающий участие в реакции.

Документы, цитированные в отчете о поиске Патент 2021 года RU2741006C1

RU 2008147909 A, 10.06.2010
RU 2012147912 A, 20.05.2014
WO 2015063763 A1, 07.05.2015
CN 109908903 A, 21.06.2019.

RU 2 741 006 C1

Авторы

Медведев Артем Анатольевич

Кустов Александр Леонидович

Бельдова Дарья Алексеевна

Прибытков Петр Вадимович

Костюхин Егор Максимович

Кустов Леонид Модестович

Даты

2021-01-22Публикация

2020-06-17Подача