Изобретение относится к радионавигации и может быть использовано для определения относительных дальностей от фазового центра (ФЦ) антенны источника радиоизлучения (ИР), находящегося на передающем радиосигналы объекте, в том числе подвижном, до ФЦ антенн станций наземной системы, и управления его движением в зоне навигации. Радиосигнал формирует и передает источник радиоизлучения. Его принимают системой стационарных наземных станций с заданными координатами ФЦ их антенн, передают результаты принятых и обработанных на станциях радиосигналов в единый центр приема и обработки и в нем определяют упомянутые относительные дальности. Реализация способа позволит, в том числе, упростить соответствующие системы позиционирования, обеспечить точность и однозначность измерения указанных относительных дальностей.
Известны способы определения относительных дальностей, основанные на применении угломерных, дальномерных, разностно и суммарно-дальномерных и комбинированных методов определения местоположения объекта с амплитудными, временными, частотными, фазовыми и импульсно-фазовыми методами измерения параметров радиосигнала (Патенты РФ №№2115137, 2213979, 2258242, 2264598, 2309420, 2325666, 2363117, 2371737, 2378660, 2430385, 2439617, 2506605, 2507529, 2510518, 2539968, 2558640, 2559813, 2567114, 2568104, 2572589, 2584976, 2597007, 2598000, 2599984, 2602506, 2617711, 2617448, 2620359, 2653506, 2657237, 2715059, 2725106; Патенты США №№9423502 В2, 9465099 В2, 9485629 В2, 9488735 В2, 9661604 В1, 9681267 В2, 2016/0327630 А1. 2016/0330584 А1, 2016/0337933 А1, 2019265363 А1; Основы испытаний летательных аппаратов / Е.И. Кринецкий и др. Под ред. Е.И. Кринецкого. - М.: Машиностр., 1979, с. 64-89; Радиотехнические системы / Ю.М. Казаринов и др. Под ред. Ю.М. Казаринова. - М.: ИЦ «Академия», 2008, с. 7, 17-18, п.п. 7.1-7.4, гл. 10.; Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. - М.; «Радиотехника», 2008, гл. 5; Кинкулькин И.Е. и др. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, 97-100). Известные способы имеют те или иные недостатки, например, необходимость механического перемещения антенной системы, невозможность однозначного определения координат объекта, необходимость априорной информации о местоположении объекта, необходимость общей синхронизации передающих и принимающих радиосигналы радиотехнических объектов, не учитывают влияние на результат отражения радиоволн, например, от земли, не исключают случайные фазы гетеродинов, имеют недостаточные быстродействие и точность.
По критерию минимальной достаточности наиболее близким является способ определения относительных дальностей по патенту RU №2718618.
Преимуществом заявляемого способа определения относительных дальностей от ФЦ антенны ИР, находящегося на передающем радиосигналы объекте, в том числе подвижном, до ФЦ антенн станций наземной системы по сравнению с известными способами является повышение точности и увеличение зоны однозначного определения указанных относительных дальностей. Это достигается тем, что на объекте синхронизировано формируют и передают радиосигнал в виде двух групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и с заданными частотами, причем одно из трех гармонических колебаний первой группы является общим с одним из трех гармонических колебаний второй группы. На каждой станции синхронизировано квадратурно принимают передаваемый с объекта радиосигнал. Потактно с заданными частотой дискретизации и количеством тактов в цикле формируют его цифровые квадратурные компоненты (ЦКК). Из сформированных ЦКК выделяют и формируют для каждой группы три пары цифровых квадратурных компонент (КК), соответствующих компонентам передаваемых радиосигналов. Затем путем накопления КК по заданному количеству тактов формируют три пары цифровых квадратурных компонент, соответствующих указанным группам. С использованием полученных таким образом цифровых квадратурных компонент формируют приведенные в способе параметры и по ним для каждой k-й группы станций определяют временные задержки (ВЗ) относительно k-й группы заданной станции. ВЗ передают в единый центр приема и обработки радиосигналов. По ВЗ и при выполнении заданных в способе условий однозначно определяют относительные дальности от ИР до антенн станций независимо от удаленности движущегося объекта до станций.
Для достижения указанного технического результата в соответствии с настоящим изобретением в способе определения относительных дальностей от источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, передаваемые им радиосигналы принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизировано формируют и передают радиосигнал в виде двух k-тых групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы, при этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы, упомянутый радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции, при этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют, потактно с заданной частотой дискретизации df на каждом j-м такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты из сформированных таким образом цифровых квадратурных компонент выделяют и формируют для каждой k-й группы три пары цифровых квадратурных компонент соответствующих i-м компонентам передаваемых радиосигналов, принимаемых на n-тых станциях, формируют путем накопления компонент по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры, соответствующие k-тым группам принимаемых на n-тых станциях радиосигналов
формируют первую и вторую пары квадратурных компонент
где a tan2(x,y) равно величине угла (в радианах), образованного осью х и прямой, содержащей начало (0,0) и точку (x,y), в интервале от -π до π, исключая (-π), а π - известное число, равное отношению длины окружности к ее диаметру,
где |A| - модуль числа А, - соответственно, либо частоты, полученные из упомянутых частот посредством сдвига на частоту гетеродина при указанном переносе спектра, либо частоты, равные в противном случае, по сформированным таким образом параметрам в качестве квадратурных компонент выбирают при условии первую пару квадратурных компонент в противном случае выбирают вторую пару квадратурных компонент по выбранным парам квадратурных компонент для каждой k-й группы n-й станции определяют временные задержки относительно k-й группы заданной станции с индексом n=n0 в соответствии с выражением
передают значения в единый центр приема и обработки радиосигналов по соответствующим n-м линиям связи, в нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала с определяют относительные дальности до фазового центра антенны объекта от указанных фазовых центров антенн станций Dn в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной с/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2, при условии, что расстояние между фазовыми центрами антенн станций для любой пары из N станций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
Совокупность всех признаков позволяет определить упомянутые относительные дальности с достижением указанного технического результата.
В существующем уровне техники не выявлено источников информации, которые содержали бы сведения о способах того же назначения с указанной совокупностью признаков. Ниже изобретение описано более детально.
Сущность способа заключается в следующем. Источник радиоизлучения находится на передающем радиосигналы объекте, в том числе подвижном. Радиосигнал принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами ФЦ их антенн. На объекте синхронизировано формируют и передают радиосигнал в виде двух k-х групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы. При этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы. Этот радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции. При этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют (в зависимости от располагаемой при реализации способа элементной базы и используемого частотного диапазона). Затем потактно с заданной частотой дискретизации df на каждом j-том такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты (ЦКК) In,j и Qn,j. Из сформированных таким образом ЦКК выделяют и формируют для каждой k-й группы три пары цифровых квадратурных компонент соответствующих i-тым компонентам передаваемых радиосигналов, принимаемых на n-тых станциях. Формируют путем накопления компонент по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент и Для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры (1). По сформированным таким образом параметрам (1) определяют временные задержки в соответствии с выражением (2). Значения передают в единый центр (ЕЦ) приема и обработки радиосигналов по соответствующим n-тым линиям связи (электрическим, оптическим и др.). В нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала определяют относительные дальности Dn до ФЦ антенны ИР от указанных ФЦ антенн станций в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной 1/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2. При этом должно быть выполнено условие, что расстояние между ФЦ антенн станций для любой пары из N станций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
В принципе, хотя это и не обязательно, значения величин ΔFk, df, J могут быть заданы таким образом, чтобы отношение продолжительности цикла, равной J/df, к упомянутому периоду Т было целым числом. В этой ситуации определенные относительные задержки, например, для покоящегося объекта от цикла к циклу не будут изменяться во времени. Если это условие не выполняется, тогда каждая из относительных дальностей смещается на одну и ту же величину, что не влияет на точность определения координат по относительным дальностям. В принципе, можно после каждого цикла центрировать относительные дальности посредством исключения из каждой полученной в цикле относительной дальности среднего значения всех относительных дальностей, полученных в цикле, тогда относительные задержки, например, для покоящегося объекта также не будут изменяться во времени.
Представление квадратурных компонент в цифровом виде дает определенное преимущество при решении задачи за счет простоты ее программной реализации. Одновременное совместное использование радиосигнала в виде двух групп позволяет увеличить зону однозначного определения относительных дальностей и обеспечить высокую точность их определения. Важно и то, что применение одного общего для обеих групп указанного гармонического колебания позволяет использовать пять частот вместо шести. Повышение точности и увеличение зоны однозначного определения относительных дальностей позволят, в свою очередь, повысить, например, точность определения пространственных координат ФЦ антенны объекта по измеренным относительным дальностям от него за счет увеличения зоны однозначного определения относительных дальностей.
Кроме того, предложенный способ позволяет упростить решение, например, задачи определения координат объекта, в том числе, движущегося, поскольку он не требует применения каких-либо дополнительных методов, связанных со счислением относительных дальностей, вызванным тем, что использование функции a tan2(x,y) для вычисления фазы возвращает фазу в интервале угла в радианах от -π до π, а при выходе за пределы интервала при движении объекта фаза претерпевает скачок, что, в свою очередь, приводит к скачку указанного времени задержки. Предлагаемый способ позволяет однозначно определять относительные дальности независимо от удаленности движущегося объекта до станций (радиомаяков).
Для определения координат можно использовать любой из известных методов, например, из защищенных патентами RU (№№2530231, 2530239, 2530240, 2624463, 2640032) или из защищенных международными заявками в системе РСТ (WO/2015/012737, WO/2015/012733, WO/2015/012734) или из опубликованных в статьях автора (Алгоритм определения пространственных координат объекта по относительным дальностям до него // Нелинейный мир. 2015. №5. С.38-41; Итерационный алгоритм определения пространственных координат объекта // Информационно-измерительные и управляющие системы. 2016. Т.14. №7. С. 64-69).
Способ может найти применение для построения навигационно-посадочной системы. Перечислим основные достоинства способа:
- обеспечивает увеличение зоны однозначного определения относительных дальностей до объекта независимо от удаленности движущегося объекта до станций,
- повышает точность определения относительных дальностей,
- позволяет уменьшить количество используемых частот,
- между объектом и совокупностью передающих станций не требуется общая синхронизация,
- исключает влияние отраженных, например, от земли, сигналов,
- позволяет исключить случайные фазы гетеродинов передатчиков и гетеродина приемника,
- существенно упрощает прием и обработку радиосигналов,
- сигналы, заданные в аналитическом виде, проще формировать и преобразовывать, благодаря, в том числе, этому повышается точность измерений,
- обеспечивает возможность производить измерения с использованием существующей элементной базы, программируемых логических интегральных схем (ПЛИС) и микропроцессорной техники,
- позволяет осуществлять одновременные измерения на большом количестве объектов.
Результативность и эффективность использования заявляемого способа состоит в том, что он может быть применен на практике для развития и совершенствования радиотехнических систем определения относительных дальностей, а также в других приложениях. Способ позволяет однозначно определять относительные дальности от объекта с большой точностью и более просто по сравнению с известными способами.
Таким образом, заявляемый способ обеспечивает появление новых свойств, не достигаемых в аналогах. Проведенный анализ позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию «новизны».
Также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения действий на достижение указанного результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Таким образом, заявленное изобретение соответствует критериям «новизна» и «изобретательский уровень», а также критерию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ ДАЛЬНОСТЕЙ ДО ОБЪЕКТА | 2020 |
|
RU2746264C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ ДАЛЬНОСТЕЙ ОТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2020 |
|
RU2743665C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ ДАЛЬНОСТЕЙ ДО ОБЪЕКТА | 2020 |
|
RU2743573C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2019 |
|
RU2722617C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2019 |
|
RU2718618C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ОБЪЕКТА | 2019 |
|
RU2718593C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ОБЪЕКТА | 2019 |
|
RU2723986C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2017 |
|
RU2640032C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ОБЪЕКТА | 2017 |
|
RU2638572C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ОБЪЕКТА | 2017 |
|
RU2647496C1 |
Изобретение относится к радионавигации и может использоваться для определения относительных дальностей от источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - повышение точности и увеличение зоны однозначного определения упомянутых относительных дальностей. В заявленном способе на объекте синхронизировано формируют и передают радиосигнал в виде двух групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и с заданными частотами. Одно из трех гармонических колебаний первой группы является общим с одним из трех гармонических колебаний второй группы. На каждой станции синхронизировано квадратурно принимают передаваемый с объекта радиосигнал. Потактно с заданными частотой дискретизации и количеством тактов в цикле формируют его цифровые квадратурные компоненты (ЦКК). Из сформированных ЦКК выделяют и формируют для каждой группы три пары цифровых квадратурных компонент (КК), соответствующих компонентам передаваемых радиосигналов. Затем путем накопления КК по заданному количеству тактов формируют три пары цифровых квадратурных компонент, соответствующих указанным группам. С использованием полученных таким образом цифровых квадратурных компонент формируют приведенные в способе параметры и по ним для каждой k-й группы станций определяют временные задержки (ВЗ) относительно k-й группы заданной станции. ВЗ передают в единый центр приема и обработки радиосигналов. По ВЗ и при выполнении заданных в способе условий однозначно определяют относительные дальности от ИР до антенн станций независимо от удаленности движущегося объекта до станций. Способ позволяет исключить влияние отраженных, например, от земли радиосигналов и случайных фаз гетеродинов передатчика и приемников. Между ИР и совокупностью принимающих станций не требуется общая синхронизация.
Способ определения относительных дальностей от источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, при котором передаваемые им радиосигналы принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизировано формируют и передают радиосигнал в виде двух k-х групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы, при этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы, упомянутый радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции, при этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют, потактно с заданной частотой дискретизации df на каждом j-том такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты и из сформированных таким образом цифровых квадратурных компонент выделяют и формируют для каждой k-той группы три пары цифровых квадратурных компонент и соответствующих i-м компонентам передаваемых радиосигналов, принимаемых на n-тых станциях, формируют путем накопления компонент по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры, соответствующие k-тым группам принимаемых на n-х станциях радиосигналов
формируют первую и вторую пары квадратурных компонент
где a tan2(x,y) равно величине угла (в радианах), образованного осью х и прямой, содержащей начало (0,0) и точку (х,у), в интервале от -π до π, исключая (-π), а π - известное число, равное отношению длины окружности к ее диаметру,
где |А| - модуль числа А, - соответственно, либо частоты, полученные из упомянутых частот посредством сдвига на частоту гетеродина при указанном переносе спектра, либо частоты, равные в противном случае, по сформированным таким образом параметрам в качестве квадратурных компонент и выбирают при условии первую пару квадратурных компонент в противном случае выбирают вторую пару квадратурных компонент по выбранным парам квадратурных компонент для каждой k-й группы n-й станции определяют временные задержки относительно k-й группы заданной станции с индексом n=n0 в соответствии с выражением
где
передают значения в единый центр приема и обработки радиосигналов по соответствующим n-тым линиям связи, в нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала с определяют относительные дальности до фазового центра антенны объекта от указанных фазовых центров антенн станций Dn в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной с/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2, при условии, что расстояние между фазовыми центрами антенн станций для любой пары из Дистанций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ОБЪЕКТА | 2019 |
|
RU2718593C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2015 |
|
RU2594759C1 |
МНОГОПОЗИЦИОННЫЙ ПАССИВНЫЙ РАДИОЛОКАЦИОННЫЙ КОМПЛЕКС, РЕАЛИЗУЮЩИЙ КОМБИНИРОВАННЫЙ ОДНОЭТАПНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА НА ЭТАПЕ ЗАХОДА НА ПОСАДКУ | 2015 |
|
RU2632922C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ОБЪЕКТА | 2019 |
|
RU2723986C1 |
Способ измерения параметров движения летательного аппарата в фазовых угломерно-дальномерных системах и устройство его реализующее | 2016 |
|
RU2649411C1 |
СПОСОБ ПРИЕМА РАДИОСИГНАЛОВ ОТ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЙ | 2011 |
|
RU2465614C1 |
US 3725932 A, 03.04.1973 | |||
JP 2010117313 A, 27.05.2010 | |||
JP 2009229393 A, 08.10.2009 | |||
US 5815117 A, 29.09.1998. |
Авторы
Даты
2021-02-11—Публикация
2020-10-22—Подача