Изобретение относится к катализаторам гидроочистки для получения сырья каталитического крекинга с низким содержанием серы и азота.
Сырье каталитического крекинга требует предварительной гидроочистки с целью снижения содержания серы и азота, присутствие которых приводит к дезактивации цеолитсодержащих катализаторов крекинга. Серо- и азотсодержащие соединения сырья каталитического крекинга приводят к увеличению содержания этих компонентов в высокоценных продуктах, таких как высокооктановый бензин каталитического крекинга, и к увеличению выброса оксидов азота и серы в атмосферу. В последние годы наблюдается утяжеление сырья каталитического крекинга из-за увеличения глубины переработки нефти, что приводит к повышению содержания вредных компонентов и необходимости повышения стартовой температуры процесса гидроочистки, что приводит к быстрой дезактивации катализаторов. Кроме того, глубокая гидроочистка вакуумного газойля позволяет получать малосернистый бензин крекинга и положительно сказывается на работе установок крекинга. В связи с этим чрезвычайно актуальной задачей является создание новых высокоактивных катализаторов, позволяющих проводить гидроочистку сырья каталитического крекинга при как можно меньшей стартовой температуре процесса гидроочистки.
Известны различные нанесённые катализаторы гидроочистки углеводородного сырья, однако общим недостатком для них является высокое остаточное содержание серы в получаемых продуктах.
Наиболее часто для проведения гидрообессеривания нефтяного сырья используют катализаторы, содержащие оксиды кобальта или никеля и молибдена, нанесенные на оксид алюминия. Известен катализатор гидрообессеривания [RU 2002124681, B01J23/887, C10G45/08, 10.05.2004], содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что имеет соотношение компонентов, мас.%: оксид кобальта – 3.0-9.0, оксид молибдена – 10.0-24.0, оксид алюминия – остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0.6-0.8 кг/мм2. При этом процесс гидроочистки ведут при температуре 310-340оС, давлении 3.0-5.0 МПа, соотношении водород/сырье 300-500 нм3/м3 и объемной скорости подачи сырья 1.0-4.0 ч-1. Основным недостатком такого катализатора гидроочистки является высокое содержание серы в получаемых продуктах.
Снижение остаточного содержания серы в получаемых нефтепродуктах достигают путем использования катализаторов, обладающих повышенной активностью. Ранее катализаторы гидроочистки чаще всего готовили методом влажного смешения гидроксида алюминия с соединениями активных металлов с последующей формовкой, сушкой и прокалкой. Такие катализаторы описаны в патентах [RU 1774555, B01J37/02, 11.11.1990; RU 2073566, B01J37/02, 28.08.1995; RU 2103065, B01J37/02, 27.01.1998; RU 2137541, B01J23/88, 20.09.1999; RU 2147256, B01J23/883, 10.04.2000; RU 2189860, B01J37/04, 27.09.2002; RU 2271861, B01J23/85, 20.03.2006]. Общим недостатком этих катализаторов является низкая активность в гидроочистке.
В последние годы для приготовления катализаторов гидроочистки используют метод нанесения активных металлов на уже сформованный носитель. В качестве носителя чаще всего используют оксид алюминия с определённым размером и формой гранул и заданными текстурными характеристиками. Носитель часто модифицируют различными добавками, в том числе соединениями кремния или бора. При этом модифицирующие добавки вводят в носитель либо до стадии его формования, путем соосаждения модификаторов и алюминия из совместных растворов [Journal of Catalysis 115 (1989) 441-451; Journal of Materials Research 33 (2018) 3570–3579; Catalysis Today 133–135 (2008) 267–276], либо путем смешения гидроксида алюминия с модифицирующим соединением на стадии приготовления пасты для формовки [RU 2319543, B01J23/88, 20.03.2008], либо вводят добавку методом пропитки в сформованный носитель, с последующей сушкой и прокалкой [Catalysis Today 107–108 (2005) 551–558; Energy & Fuels 25 (2011) 3100–3107].
Введение активных металлов, чаще всего Co, Ni, Mo и W, в состав катализатора осуществляют путем пропитки сформованного носителя водными растворами их солей. При этом могут использовать как раздельное нанесение активных металлов путем пропитки в несколько стадий [RU 2242501, C10G45/08, 20.12.2004; RU 2246987, B01J37/02, 27.02.2005], так и нанесение металлов из совместных растворов, стабилизированных различными агентами [RU 2073567, B01J37/02, 05.10.1995; RU 2216404, B01J37/02, 20.11.2003; RU 2306978, B01J23/88, 27.09.2007; RU 95117374, B01J37/02, 20.11.1996].
С целью повышения гидрообессеривающей активности катализаторов при их приготовлении используют носитель с улучшенными текстурными характеристиками, при этом удельная поверхность катализатора достигает 300 м2/г, а средний диаметр пор лежит в интервале 8-11 нм, что обеспечивает хороший доступ серосодержащих молекул к активным центрам катализатора. Так, известен катализатор [RU 2192923, B01J27/188, C10G45/08, 20.11.2002] на основе оксида алюминия, который содержит в пересчете на весовое содержание оксида, мас.%: 2-10 оксида кобальта СоО, 10-30 оксида молибдена МоО3 и 4-10 оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.
Известен катализатор гидрообессеривания дизельной фракции [RU 2313392, B01J37/02, 27.12.2007], имеющий объем пор 0.3-0.7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм, содержащий следующие компоненты, мас.%: соединения кобальта с концентрацией 2,5-7,5 в пересчете на СоО, соединения молибдена с концентрацией 12-25 в пересчете на МоО3, лимонную кислоту с концентрацией 15-35, соединения бора 0.5-3.0 в пересчете на В2О3, оксид алюминия Al2O3 – остальное, при этом кобальт, молибден, лимонная кислота и бор могут входить в состав комплексных соединений различной стехиометрии.
Катализаторы гидроочистки также могут быть приготовлены с использованием комплексных солей металлов. Так, известен способ получения катализатора гидроочистки нефтяных фракций [RU 2074025, B01J 21/04, 27.02.1997], содержащий, мас.%: 14-21 MoO3; 3-8 NiO или CoO; 0.5-6 P2O5, Al2O3 – остальное, полученный путем нанесения соединений активных компонентов на окись алюминия соосаждением солей металлов VIII и VI групп Периодической системы, а также фосфора с последующей формовкой каталитической массы в виде экструдатов, сушкой и прокалкой полученных гранул, характеризующийся тем, что с целью получения катализатора с повышенной активностью в реакциях гидрообессеривания нефтяных фракций, при синтезе катализатора активные компоненты вводятся в гидроокись алюминия в виде комплексного раствора солей металлов VIII и VI групп, стабилизированного фосфорной кислотой при условии, что рН раствора фосфорной кислоты составляет 0.5-2.5 при температуре 40-60°С.
Известен катализатор гидроочистки нефтяных фракций [RU 2286846, B01J23/78, B01J23/83, C10G45/08, 10.11.2006], который содержит оксиды кобальта, молибдена, натрия, лантана, бора и фосфора и имеет следующий состав, мас.%: СоО 2.5-4.0; МоО3 8.0-12.0; Na2O 0.01-0.08; La2О3 1.5-4.0; P2O5 2.0-5.0; В2О3 0.5-3.0; Al2O3 – остальное.
Общим недостатком для вышеперечисленных катализаторов, является то, что с их использованием не удаётся достичь низкого остаточного содержания серы и азота в получаемых продуктах.
Наиболее близким к предлагаемому техническому решению является описанный в [RU 2629358, C10G45/08, B01J31/22, 29.08.2017] катализатор гидроочистки сырья гидрокрекинга, который содержит, мас.%: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] – 29.0-36.0; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5.0-25.0; натрий – не более 0.03; γ-Al2O3 – остальное. При этом входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0.35-0.65 см3/г, средний диаметр пор 10-15 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас.%: Мо – 10-14; Ni – 3.0-4.3; S –6.7-9.4; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5.0-25.0; натрий – не более 0.03; γ-Al2O3 – остальное.
Основным недостатком известного катализатора является то, что он имеет неоптимальный химический состав, что обуславливает его низкую активность в гидроочистке и повышенную кислотность, что приводит к более быстрой дезактивации.
Изобретение решает задачу создания эффективного катализатора гидроочистки сырья каталитического крекинга.
Задача решается катализатором гидроочистки сырья каталитического крекинга, включающим в свой состав соединения никеля, молибдена, фосфора и носитель, который содержит, мас.%: [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] – 1.7-6.6, Ni2[H2P2Mo5O23] – 22.6-30.1 и H4[Mo4(C6H5O7)2O11] – 3.1-6.6; носитель – остальное; при этом носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0.1-20, B2O3 – 0-10; натрий – не более 0.03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). После сульфидирования по известным методикам катализатор содержит, мас.%: Мо – 11.7-16.5; Ni –3.0-4.4; S – 9.4-13.4; P – 1.5-1.9, носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 0.1-20.0, B2O3 – 0-10; натрий – не более 0.03, γ- и χ-Al2O3 – остальное. Катализатор готовят с использованием носителя, который имеет фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности, наблюдаемые у алюмосиликатов и силикатных анионов; имеет концентрацию Льюисовских кислотных центров всех типов в диапазоне 100-1000 µмоль/г.
Существенным отличительным признаком предлагаемого катализатора по сравнению с прототипом является его химический состав, а именно: заявляемый катализатор содержит, мас.%: [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] – 1.7-6.6, Ni2[H2P2Mo5O23] – 22.6-30.1 и H4[Mo4(C6H5O7)2O11] – 3.1-6.6; носитель – остальное; при этом носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0.1-20, B2O3 – 0-10; натрий – не более 0.03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). Выход содержания компонентов катализатора за заявляемые границы приводит к снижению активности катализатора.
Существенным признаком предлагаемого катализатора по сравнению с прототипом является также то, что он имеет удельную поверхность 120-150 м2/г, объем пор 0.25-0.5 см3/г, средний диаметр пор 8-13 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм.
Существенным признаком катализатора является также то, что носитель согласно ЯМР 29Si содержит соединения кремния, которые представляют собой фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов.
Существенным признаком катализатора является также то, что концентрация Льюисовских кислотных центров носителя всех типов составляет 100-1000 µмоль/г.
Существенным признаком катализатора является то, что после сульфидирования по известным методикам катализатор содержит, мас.%: Mo – 11.7-16.5; Ni – 3.0-4.4; S – 9.4-13.4; P – 1.5-1.9, носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 0.1-20.0, B2O3 – 0-10, натрий – не более 0.03, γ- и χ-Al2O3 – остальное.
Технический результат предлагаемого катализатора складывается из следующих составляющих:
1. Заявляемый химический состав катализатора обуславливает максимальную активность в целевых реакциях, протекающих при гидроочистке сырья каталитического крекинга. Наличие в составе катализатора фрагментов Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 с заявляемой концентрацией Льюисовских кислотных центров 100-1000 µмоль/г обеспечивает уровень кислотности, способствующий минимизации нежелательного химического взаимодействия между активными металлами (Ni и Mo) и носителем, и селективному получению наиболее активного в гидроочистке сульфидного компонента – NiMoS фазы типа II, который обеспечивает высокую активность катализатора в превращении серо- и азотсодержащих компонентов сырья.
2. Наличие в составе катализатора соединений кремния в виде Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту.
3. Наличие в составе катализатора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] в заявляемых концентрациях обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, наиболее активного компонента – NiMoS фазы типа II в форме частиц оптимальной для катализа морфологии, локализованных в доступных для всех подлежащих превращению молекул сырья.
Описание предлагаемого технического решения.
Готовят носитель, содержащий фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3.
Берут навеску продукта быстрой термической обработки гидраргиллита (ПБТОГ), отвечающего следующим требованиям:
– массовая доля гидраргиллита (гиббсита), мас.%, не более 3;
– массовая доля бемита, мас.%, не более 10;
– массовая доля разупорядоченного χ подобного Al2O3 («рентгеноаморфная» или «аморфная» фаза или ρ-Al2O3), мас.%, не менее 87;
– массовая доля натрия, мас.%, не более 0.03;
– массовая доля потери массы при прокаливании при 800°С, мас.%, в пределах 6-10;
– удельная площадь поверхности, м2/г, не менее 200.
Под данные требования подпадает либо продукт ЦТА (ТУ 2175-040-03533913-2007), получаемый в центробежном реакторе барабанного типа ЦЕФЛАР [RU 2264589, F26B7/00, 20.11.2005], либо термоактивированный гидроксид алюминия ТГА (ТУ 24.42.12-146-60201897-2018), получаемый в трубчатых реакторах в потоке горячих газов [RU 2219128, C01F7/44, 20.12.2003]. Допускается использование аналогичного продукта, выпускаемого по иным ТУ, но обязательно отвечающего вышеперечисленным требованиям.
Навеску измельчают на мельнице (шаровой, планетарной, струйной или любой другой) до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм. В ряде случаев ПБТОГ используют в исходном состоянии, т.е. без измельчения, в этом случае фракционный состав агломератов частиц сохраняется.
Навеску ПБТОГ гидратируют при перемешивании в течение 2-4 ч в нагретых до 50-75°C слабо концентрированных растворах азотной кислоты (кислотный модуль не более 0.1). После чего полученную суспензию фильтруют под вакуумом и промывают либо дистиллированной водой, либо технически подготовленной водой, не содержащей натрия. В результате получают влажный осадок – кек.
Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества кремнийсодержащего источника или кремнийсодержащего и борсодержащего источников при температуре суспензии выше 100°C. После завершения гидротермальной обработки суспензию охлаждают до заданной температуры, но не выше 90°С, автоклав разгружают, содержимое сосуда репульпируют дистиллированной или технически подготовленной водой до получения псевдобемитсодержащей суспензии, пригодной для распылительной сушки.
Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не выше 350°C и непрерывном перемешивании репульпированной суспензии. Готовый порошок модифицированного гидроксида алюминия выгружают из приемной ёмкости (стакана) циклонного пылеуловителя распылительной сушилки.
Далее готовят пластичную массу методом смешения и пептизации полученного порошка в смесителе с Z-образными лопастями в присутствии водного раствора аммиака.
Готовую пластичную массу перегружают из смесителя в экструдер и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
Затем проводят термическую обработку экструдатов, включающую в себя предварительную стадию сушки. Экструдаты сушат в сушильном шкафу при температуре (110±10)°C в течение 2 ч. Термическую обработку проводят в муфельной печи с подачей осушенного воздуха в камеру печи. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре (550±10)°C в течение 4 ч.
Готовый носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0.1-20 и B2O3 – 0-10; натрий – не более 0.03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет: (0-40):(100-60); носитель имеет фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов; имеет концентрацию Льюисовских кислотных центров всех типов в диапазоне 100-1000 µмоль/г; характеризуется удельной площадью поверхности 210-330 м2/г, объем пор по низкотемпературной десорбции азота – 0.5-0.85 см3/г при среднем диаметре пор 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм. Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 250 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.
С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий в заданных соотношениях смесь комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11]. Для этого отвешивают заданные количества оксида молибдена MoO3, никеля карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4), кислоты лимонной моногидрата и кислоты ортофосфорной. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 80°C. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навески никеля карбоната основного водного и кислоты ортофосфорной при постоянном перемешивании. После получения прозрачного раствора зеленого цвета добавляют навеску оксида молибдена. Раствор перемешивают до образования однородного прозрачного раствора, содержащего смесь комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] и не содержащего мути, пузырьков и пены. Раствор содержит никель и молибден в форме смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11].
Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.
Полученным раствором пропитывают модифицированный носитель, при этом используют пропитку носителя по влагоемкости. Пропитку проводят при температуре 25-70°C в течение 15-60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100-200°C.
В результате получают катализатор, содержащий, мас.% [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] – 1.7-6.6, Ni2[H2P2Mo5O23] – 22.6-30.1 и H4[Mo4(C6H5O7)2O11] – 3.1-6.6; носитель – остальное; при этом носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0.1-20 и B2O3 – 0-10; натрий – не более 0.03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). Катализатор имеет удельную поверхность 120-150 м2/г, объем пор 0.25-0.5 см3/г, средний диаметр пор 8-13 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм. После сульфидирования по известным методикам катализатор содержит, мас.%: Мо – 11.7-16.5; Ni – 3.0-4.4; S – 9.4-13.4; P – 1.5-1.9, носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 0.1-20 и B2O3 – 0-10; натрий – не более 0.03; χ-Al2O3 и γ-Al2O3 – остальное.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1 Согласно известному решению [RU 2629358, C10G45/08, B01J31/22, 29.08.2017].
Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0.5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0.03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2.3 г борной кислоты в 1 л 1.5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2.5%-ным водным раствором аммиака, после чего экструдируют при давлении 60.0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1.6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий мас.%: борат алюминия Al3BO6 со структурой норбергита – 5.0; натрий – 0.03; γ-Al2O3 – остальное. Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2 [Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48.91 г лимонной кислоты С6Н8О7, 89.87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31.4 г основного карбоната никеля NiCO3×mNi(OH)2 ×nH2O (где m – 0-2, n – 0-4). После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 100°С. Полученный катализатор содержит, мас.%: [Ni(H2O)2]2 [Mo4O11(C6H5O7)2] – 32.4; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5.0; натрий – 0.03; γ-Al2O3 – остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0.55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Далее катализатор сульфидируют по известным методикам, либо при атмосферном давлении в потоке сероводорода или его смеси с водородом при температуре не более 400оС, либо при давлении до 4 МПа в потоке водорода и сульфидирующей смеси, представляющей собой раствор диметилдисульфида в дизельном топливе при температуре не более 340оС.
В результате получают катализатор, который содержит мас.%: Мо – 12.5; Ni – 3.85; S – 8.3; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5.0; натрий – 0.03; γ-Al2O3 – остальное.
Далее проводят гидроочистку сырья гидрокрекинга, в качестве которого используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 3.5% серы и 0.2% азота. Гидроочистку проводят при давлении 10.0 МПа, расходе сырья 0.7 ч-1, объемном отношение водород/сырье 1200 нм3/м3, температуре 380°С.
Примеры 2-7 иллюстрируют предлагаемое техническое решение.
Пример 2
Носитель готовят следующим образом. Берут 150 г порошкообразного продукта ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабо концентрированном (0.3 мас.%) растворе азотной кислоте при температуре 50°С в течение 2 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество – 0.03 мас.%. В результате получают влажный осадок – кек.
Кек загружают в автоклав, в который добавляют 1.5% раствор азотной кислоты до достижения pH суспензии 1.0-2.0. К суспензии добавляют при перемешивании 0.25 мл жидкости полиметилсилоксановой марки ПМС-50 (ГОСТ 13032-77). Сосуд автоклава нагревают до 160°С и выдерживают в течение 10 ч. Далее сосуд автоклава охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.
Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2.5%-ным водным раствором аммиака, после чего экструдируют при давлении 50-60.0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром 1 мм.
Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2, – 0.1; натрий – 0.03; χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 0:100.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 7.1 г лимонной кислоты C6H8O7, 8.0 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 3.8 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 24.1 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 2.34 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 22.6 г Ni2[H2P2Mo5O23] и 4.69 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 100°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 11.7; Ni – 3.0; P – 1.5; S – 9.4; носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 0.1, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 0:100. Катализатор имеет удельную поверхность 130 м2/г, объем пор 0.4 см3/г, средний диаметр пор 8.0 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм.
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Пример 3
Готовят носитель по методике, аналогичной примеру 2 с той разницей, что к суспензии добавляют при перемешивании 2.5 мл жидкости полиметилсилоксановой марки ПМС-100 (ГОСТ 13032-77). Остальные операции аналогичны примерам 1 и 2. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 1, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 5:95.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 8.2 г лимонной кислоты C6H8O7, 8.8 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 4.0 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 26.1 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 3.39 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 24.1 г Ni2[H2P2Mo5O23] и 4.75 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 40°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 110°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 12.6; Ni – 3.3; P – 1.6; S – 10.2; носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 1.0, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 5:95. Катализатор имеет удельную поверхность 145 м2/г, объем пор 0.35 см3/г, средний диаметр пор 9.5 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм.
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Пример 4
Готовят носитель по методике, аналогичной примеру 2 с той разницей, что к суспензии добавляют при перемешивании 12.5 мл жидкости полиметилсилоксановой марки ПМС-100 (ГОСТ 13032-77). Остальные операции аналогичны примерам 1 и 2. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 5, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 20:80.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 7.5 г лимонной кислоты C6H8O7, 9.3 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 4.5 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 28.1 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 1.67 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 27.12 г Ni2[H2P2Mo5O23] и 5.6 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 70°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 120°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 13.6; Ni – 3,5; P – 1.8; S – 11.0; носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 5, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 20:80. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0.30 см3/г, средний диаметр пор 10.5 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм.
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Пример 5
Готовят носитель по методике, аналогичной примеру 2 с той разницей, что к суспензии добавляют при перемешивании 50 мл жидкости полиметилсилоксановой марки ПМС-100 (ГОСТ 13032-77). Остальные операции аналогичны примерам 1 и 2. В результате получают носитель, содержащий мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 20, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 40:60.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 8.5 г лимонной кислоты C6H8O7, 10.1 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 4.8 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 30.2 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 2.71 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 28.62 г Ni2[H2P2Mo5O23] и 5.66 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 25°C в течение 60 мин. Затем катализатор сушат на воздухе 4 ч при 150°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 14.6; Ni – 3.8; P – 1.8; S – 11.8; носитель – остальное; при этом носитель содержит, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 20, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 40:60. Катализатор имеет удельную поверхность 135 м2/г, объем пор 0.25 см3/г, средний диаметр пор 12 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Пример 6
Готовят носитель по методике, аналогичной примеру 2 с той разницей, что к суспензии добавляют при перемешивании 17.8 мл жидкости полиметилсилоксановой марки Лэйксил 15-А и 0.88 г борной кислоты, разбавленной в 10 мл воды. Сосуд автоклава нагревают до 140°С и выдерживают в течение 12 ч. Остальные операции аналогичны примерам 1 и 2. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 2, соединение бора в пересчете на оксид бора B2O3 – 0.25, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 10:90.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 9.5 г лимонной кислоты C6H8O7, 10.6 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 5.0 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 32.2 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 2.81 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 30.13 г Ni2[H2P2Mo5O23] и 6.52 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 60°C в течение 30 мин. Затем катализатор сушат на воздухе 4 ч при 180°C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 15.6; Ni – 4.0; P – 1.9; S – 12.5; носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 2.0, B2O3 – 0.25, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 10:90. Катализатор имеет удельную поверхность 125 м2/г, объем пор 0.30 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм.
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Пример 7
Готовят носитель по методике, аналогичной примеру 2 с той разницей, что к суспензии добавляют при перемешивании 11.6 мл жидкости полиметилсилоксановой марки Наносил-30А и 35,2 г борной кислоты, растворенной в 100 мл воды. Остальные операции аналогичны примерам 1 и 2.
В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 2, соединение бора в пересчете на оксид бора B2O3 – 10, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 15:85.
Далее готовят раствор смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11], для чего в 40 мл дистиллированной воды при перемешивании последовательно растворяют 12.2 г лимонной кислоты C6H8O7, 11.6 г никеля (II) карбоната основного водного NiCO3×mNi(OH)2×nH2O (где m – 0-2, n – 0-4) и 5.0 мл ортофосфорной кислоты (85%). После растворения компонентов к раствору добавляют 34.2 г оксида молибдена MoO3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 80 мл. Полученный раствор содержит 6.63 г [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], 30.13 г Ni2[H2P2Mo5O23] и 5.78 г H4[Mo4(C6H5O7)2O11].
100 г полученного носителя пропитывают по влагоемкости 80 мл раствора смеси комплексов [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2], Ni2[H2P2Mo5O23] и H4[Mo4(C6H5O7)2O11] при 60 C в течение 15 мин. Затем катализатор сушат на воздухе 4 ч при 200 C.
Далее катализатор сульфидируют по известным методикам аналогично примеру 1. После сульфидирования катализатор содержит, мас.%: Мо – 16.5; Ni – 4.4; P – 1.9; S – 13.4; носитель – остальное; при этом носитель содержит мас.%: SiO2 – 2, B2O3 – 10, натрий – 0.03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 15:85. Катализатор имеет удельную поверхность 120 м2/г, объем пор 0.33 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1.3 мм и длиной до 20 мм.
Далее проводят гидроочистку сырья каталитического крекинга аналогично примеру 1.
Результаты тестирования катализаторов по примерам 1-7 в гидроочистке приведены в таблице.
Таблица
Таким образом, как видно из приведенных примеров, предлагаемый катализатор за счет своего химического состава имеет высокую обессеривающую и деазотирующую активность, значительно превосходящую активность катализатора-прототипа в гидроочистке сырья каталитического крекинга.
название | год | авторы | номер документа |
---|---|---|---|
Способ приготовления катализатора гидроочистки сырья каталитического крекинга | 2020 |
|
RU2744504C1 |
СПОСОБ ГИДРООЧИСТКИ СЫРЬЯ КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2020 |
|
RU2739760C1 |
Способ получения малосернистого дизельного топлива | 2020 |
|
RU2732944C1 |
Способ приготовления катализатора гидроочистки дизельного топлива | 2020 |
|
RU2732243C1 |
СПОСОБ ПОЛУЧЕНИЯ МАЛОСЕРНИСТОГО ДИЗЕЛЬНОГО ТОПЛИВА | 2021 |
|
RU2763725C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА | 2020 |
|
RU2726634C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА | 2021 |
|
RU2763723C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА | 2021 |
|
RU2763889C1 |
Катализатор гидроочистки дизельного топлива | 2018 |
|
RU2689735C1 |
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ | 2021 |
|
RU2759437C1 |
Изобретение относится к катализаторам. Описан катализатор гидроочистки сырья каталитического крекинга, включающий в свой состав соединения никеля, молибдена, фосфора и носитель, который содержит, мас.%: [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] – 1.7-6.6, Ni2[H2P2Mo5O23] – 22.6-30.1 и H4[Mo4(C6H5O7)2O11] – 3.1-6.6; носитель – остальное, при этом носитель содержит, мас.%: SiO2 – 0.1-20.0 и B2O3 – 0-10; натрий – не более 0.03, γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60), при этом носитель согласно ЯМР 29Si содержит соединения кремния, которые представляют собой фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов, а концентрация Льюисовских кислотных центров носителя всех типов составляет 100-1000 µмоль/г; после сульфидирования катализатор содержит, мас.%: Мо – 11.7-16.5; Ni – 3.0-4.4; S – 9.4-13.4; P – 1.5-1.9; полученный катализатор имеет удельную поверхность 120-150 м2/г, объем пор 0.25-0.50 см3/г, средний диаметр пор 8-13 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм. Технический результат –увеличение активности катализатора. 1 табл., 7 пр.
Катализатор гидроочистки сырья каталитического крекинга, включающий в свой состав соединения никеля, молибдена, фосфора и носитель, отличающийся тем, что он содержит, мас.%: [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] – 1.7-6.6, Ni2[H2P2Mo5O23] – 22.6-30.1 и H4[Mo4(C6H5O7)2O11] – 3.1-6.6; носитель – остальное, при этом носитель содержит, мас.%: SiO2 – 0.1-20.0 и B2O3 – 0-10; натрий – не более 0.03, γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60), при этом носитель согласно ЯМР 29Si содержит соединения кремния, которые представляют собой фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов, а концентрация Льюисовских кислотных центров носителя всех типов составляет 100-1000 µмоль/г; после сульфидирования катализатор содержит, мас.%: Мо – 11.7-16.5; Ni – 3.0-4.4; S – 9.4-13.4; P – 1.5-1.9; носитель – остальное; при этом носитель содержит, мас.%: SiO2 – 0.1-20.0, B2O3 – 0-10; натрий – не более 0.03, γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60), полученный катализатор имеет удельную поверхность 120-150 м2/г, объем пор 0.25-0.50 см3/г, средний диаметр пор 8-13 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1.0-1.6 мм и длиной до 20 мм.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
AU 7725200 A, 30.04.2001 | |||
ЭЛЕКТРОМАГНИТНЫЙ КЛАПАН | 2002 |
|
RU2218502C1 |
Авторы
Даты
2021-03-10—Публикация
2020-07-27—Подача