Изобретение относится к области поиска и идентификации токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта (ЯРОО) с использованием систем компьютерного зрения.
Ядерно- и радиационно опасные объекты широко используются как в народном хозяйстве, так и в ядерном оружейном комплексе. В результате различных аварийных воздействий природного или техногенного характера упаковки с высокотоксичными ядерными материалами могут быть разрушены, а их содержимое разбросано в виде осколков на территории площадью в несколько квадратных километров. При этом их поиск и идентификация является длительным и трудоемким процессом, связанным с риском для здоровья персонала аварийно-спасательных формирований, а ряд токсичных веществ, таких как U-235, U-238 и Pu-239, обладают низкоэнергетичным собственным гамма-излучением, что затрудняет их поиск. Выполнение указанных мероприятий реализуется применением предлагаемого способа.
Известен способ и устройство для идентификации целевого объекта на изображении [1]. Он заключается в том, что точки на изображении разделяют на множество подмножеств согласно областям и линиям на изображении, а затем выполняется сравнение данных в каждом подмножестве с данными целевого объекта, которые хранятся в базе данных, так что целевой объект, соответствующий данным в базе данных, выбирается из изображения; тогда области и линии, соответствующие подмножествам, которые превышают заданный порог, выделяют на экране дисплея, благодаря чему целевой объект на изображении идентифицируется и также выделяется на экране дисплея.
Недостатком такого способа является отсутствие возможности идентификации осколков разрушившегося ЯРОО. Так как, при сравнении данных в каждом подмножестве с данными целевого объекта, которые хранятся в базе данных, не будет найдено совпадений по причине отличия в форме, цвете и размерах между осколками и исходным ЯРОО.
Известен беспилотный дозиметрический комплекс измерения гамма-излучения (БПДК) [2]. Он предназначен для выявления зон радиоактивного загрязнения местности, измерения спектрального состава и мощности экспозиционной дозы гамма-излучения, поиска точечных источников гамма- и нейтронного излучения, а также отображения и документирования данных радиационной обстановки. В качестве дозиметра используется блок детектирования гамма-излучения БДФИ-02, детектирующей частью которого является сцинтиллятор, выполненный на основе кристалла NaI размерами 45×45 мм. Диапазон регистрируемых энергий гамма-излучения составляет 200…3000 кэВ. Бортовое оборудование, кроме детектора-дозиметра, включает в себя датчик спутниковой навигации GPS, видеокамеру, радиоканал с выносной антенной, блок аккумуляторов и защиту от внешнего гамма-излучения. Общая масса бортового оборудования составляет 4,8 кг. Данное оборудование устанавливается на радиоуправляемый вертолет «Caliber-ZG» фирмы «Kyosho» (Япония), способный нести полезную нагрузку массой до 5 кг.
Проведение радиационной разведки данным способом позволяет определить координаты источника и нанести их на электронную карту, но не позволяет позиционировать источник на местности с использованием изображений, полученных с видеокамеры. Также, ввиду отсутствия тепловизора, нет возможности поиска и идентификации осколков по тепловому излучению.
На данный момент известен мобильный робототехнический комплекс «Помощник - 2». В его состав входит беспилотный летательный аппарат с навесным оборудованием для радиационной разведки, БЛА-РХ.00.00.000-01 (БЛА-РХ) [3]. Он предназначен для дистанционного осмотра с воздуха района техногенной аварии, поиска, обнаружения и идентификации объектов с определением координат, ведения видеонаблюдения, измерения мощности эквивалентной дозы гамма-излучения, определения положения предметов, различающихся по температуре поверхности, и передачи данной информации в режиме реального времени на пункт управления.
Комплект целевой нагрузки состоит из: совмещенного модуля видеокамеры видимого диапазона и тепловизора СМВТ 1000, устройств детектирования гамма-излучения УДКГ-А01 и УДБГ-04-06.
Устройство детектирования гамма-излучения УДКГ-А01 предназначено для поиска и локализации источников гамма-излучения, для оперативного радиационного контроля при ликвидации аварий.
Устройство детектирования гамма-излучения УДБГ-04-06 предназначено для поиска и локализации источников гамма-излучения, и применяется для доразведки радиационной обстановки при обнаружении очагов радиационного поражения, мощность дозы в которых превышает пределы измерения датчика УДКГ-А01, и устанавливается на подвес вместо последнего.
Данный способ поиска и идентификации радиоактивных источников по гамма-излучению с БЛА-РХ, включающий измерение энергии гамма-квантов сцинтилляционным детектором спектрометра, имеет недостаток. При поиске и идентификации осколков ЯРОО, содержащих радионуклиды, испускающие гамма-кванты с низкой энергией, эффективность данного способа будет низкой.
При работе БПДК и БЛА-РХ над участками, на которых расстояния между осколками не превышает одного метра, точность определения положения конкретного осколка будет недостаточна для его позиционирования. Кроме того, осколки корпуса ЯРОО и его контейнера, покрытые расплавом или имеющие вкрапления токсичного вещества, будут неотличимы от осколков составных частей, выполненных из радиотоксичного вещества. Также недостатком является необходимость просмотра оператором на пункте управления полученных фото- и видеоматериалов, поиска, идентификации и позиционирования на них осколков, что влечет за собой существенные временные затраты.
Задачей предлагаемого изобретения является разработка способа поиска и идентификации токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта, а также их позиционирование на карте местности.
Техническим результатом изобретения является поиск, идентификация и определение положения на местности токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта.
Известно что в настоящее время для проведения комплексной разведки района аварии ядерно- и радиационно опасного объекта, который может достигать 7 квадратных километров, аварийно-спасательными формированиями применяются беспилотные летательные аппараты (БЛА), оснащенные видеосредствами функционирующими в нескольких спектральных диапазонах. Анализ большого объема получаемых фото- и видео- файлов осуществляется оператором, что существенно увеличивает время поиска и идентификации осколков. В данном случае ввиду наличия человеческого фактора возможен пропуск отдельных осколков и низкая вероятность их идентификации. С целью устранения указанных недостатков предлагается осуществление анализа изображений с применением алгоритмов компьютерного зрения. Изображение, сделанное в видимом и инфракрасном спектре в автоматическом режиме подвергается обработке, поиску на нем осколков по их характерным яркостным и температурным особенностям, идентификации как осколков упаковки, корпуса и (или) составных частей ЯРОО.
Сущность предлагаемого изобретения заключается в том, что поиск осколков осуществляется на изображениях, полученных с БЛА-РХ, на основе следующих исходных данных: высота БЛА в момент съемки, его географические координаты, угол обзора камеры, разрешение камеры и соотношение сторон снимка.
Процесс поиска и идентификации осколков осуществляется поэтапно. В результате выполнения каждого из этапов на изображениях выделяются области, условно обозначающие местоположение осколков различного рода: 1 -го рода - все возможные осколки, образовавшиеся при разрушении ЯРОО, 2-го рода - осколки упаковки ЯРОО, 3-го рода - вероятные осколки корпуса ЯРОО, 4-го рода «совпавшие» - вероятные осколки составных частей ЯРОО, в том числе и выполненные из токсичных материалов, 4-го рода «достоверные» - осколки составных частей ЯРОО, выполненные из токсичных материалов.
Первый этап - на изображении, полученном с БЛА, осуществляется поиск замкнутых контуров, и выделение их прямоугольной рамкой как осколков 1-го рода. Из выделенных областей производится формирование базы шаблонов, на которых осуществляется поиск дескрипторов (характерных особенностей). Используя найденные дескрипторы, производится сравнение шаблонов с эталонными изображениями контейнера, корпуса и составных частей ЯРОО, и при наличии совпадений, выделенные на исходном снимке области отмечаются как осколков 2-го, 3-го и 4-го рода соответственно.
На втором этапе производится поиск максимально нагретых областей на изображениях, полученных с тепловизора. При условии, что время проведения съемки не превышает времени установления температурного равновесия между осколками и окружающей средой при тепловом взрыве сборки радиотоксичных и химически токсичных веществ ЯРОО или взрыва взрывчатого вещества (при его наличии) максимально нагретыми будут составные части ЯРОО и его корпус. Обнаруженные совпадения максимально нагретых областей с областями, выделенными как осколки 1-го - 4-го рода, отмечаются как осколки 4-го рода (при совпадении с областями, ранее выделенными как осколки 1-го рода) или осколки 3-го и 4-го рода «совпавшие» (при совпадении с областями, ранее выделенными как осколки 3-го и 4-го рода). В случае если время проведения съемки превышает время установления температурного равновесия, на изображении осуществляется поиск областей, в которых коэффициент спектральной яркости соответствует значениям яркостных характеристик токсичного вещества. База данных коэффициентов спектральной яркости токсичных веществ различных ЯРОО в инфракрасном спектре (7,5-13,5 мкм) формируется заранее и хранится на ЭВМ пункта управления, на которой реализуется обработка изображений. Совпавшие области выделяются, как осколки 4-го рода «совпавшие» (при совпадении с областями, ранее выделенными как осколки 4-го рода) и выделение данных областей как осколки 4-го рода (при несовпадении с областями, ранее выделенными как осколки 1-го - 4-го рода). На третьем этапе производится наложение данных о мощности эквивалентной дозы в виде выделенных цветом областей, и поиск областей выделенных как осколки 4-го рода «совпавшие», расположенных в области с максимальным значением мощности эквивалентной дозы, и выделение их как осколки 4-го рода «достоверные», являющиеся наиболее токсичными.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент RU №2637989, 2017 г.
2. Калиберда И.В. Дистанционные измерения радиационного загрязнения территорий с помощью беспилотного дозиметрического комплекса. / И.В. Калиберда, Ф.Ф. Брюхань // Вестник МГСУ. - 2012. - №4. - С. 186-194.
3. Беспилотный летательный аппарат с навесным оборудованием БЛА-РХ.00.00.000. Руководство по летной эксплуатации БЛА-РХ.00.00.000РЛЭ. - 2012. 192 с.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения дисперсного состава альфа-активных примесей при аварийном выбросе в атмосферу | 2021 |
|
RU2777752C1 |
СИСТЕМА ОБНАРУЖЕНИЯ И МОНИТОРИНГА ЗАГРЯЗНЕНИЙ МОРСКОГО НЕФТЕГАЗОВОГО ПРОМЫСЛА | 2015 |
|
RU2587109C1 |
Способ автоматизированного выявления границ зон радиоактивного загрязнения местности с использованием беспилотного летательного аппарата | 2018 |
|
RU2694465C1 |
Способ определения параметров аварийного радиационного источника по данным воздушной радиационной разведки местности | 2021 |
|
RU2755604C1 |
МОБИЛЬНЫЙ КОМПЛЕКС БЕСПИЛОТНОГО ВОЗДУШНОГО МОНИТОРИНГА | 2015 |
|
RU2612754C1 |
Модульный беспилотный летательный аппарат с системой защиты тяговых винтов | 2020 |
|
RU2752110C1 |
СПОСОБ ПРЕДАВАРИЙНОГО, АВАРИЙНОГО И ПОСТАВАРИЙНОГО КОНТРОЛЯ ИСТОЧНИКОВ РАДИАЦИОННОЙ, ХИМИЧЕСКОЙ И ВЗРЫВОПОЖАРНОЙ ОПАСНОСТИ В ГЕРМЕТИЧНЫХ ОБИТАЕМЫХ ОБЪЕКТАХ, ПРЕИМУЩЕСТВЕННО ПОДВОДНЫХ ЛОДКАХ, И КОМПЛЕКСНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2015 |
|
RU2596063C1 |
Беспилотный аппарат и комплекс наблюдения для него | 2016 |
|
RU2642202C1 |
СПОСОБ РАДИАЦИОННОГО ОБСЛЕДОВАНИЯ ИСКУССТВЕННЫХ ВОДОЁМОВ | 2019 |
|
RU2704329C1 |
Способ автоматического определения местоположения точечного источника гамма-излучения на местности | 2016 |
|
RU2620451C1 |
Изобретение относится к области поиска и идентификации токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта (ЯРОО) с использованием систем компьютерного зрения. Способ поиска и идентификации токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта заключается в том, что проводят поиск и идентификацию осколков по данным радиационной разведки о значениях мощности эквивалентной дозы гамма-излучения, при этом из различных спектральных каналов видеосредств беспилотного летательного аппарата получают изображения и осуществляют на них поиск и идентификацию осколков с применением алгоритмов компьютерного зрения, используя характерные яркостные и температурные особенности осколков упаковки, корпуса и составных частей ядерно- и радиационно опасного объекта. Технический результат – повышение точности и эффективности поиска, идентификации и определения положения на местности токсичных осколков.
Способ поиска и идентификации токсичных осколков разрушившегося в результате аварийных воздействий ядерно- и радиационно опасного объекта, заключающийся в том, что проводят поиск и идентификацию осколков по данным радиационной разведки о значениях мощности эквивалентной дозы гамма-излучения, отличающийся тем, что из различных спектральных каналов видеосредств беспилотного летательного аппарата получают изображения и осуществляют на них поиск и идентификацию осколков с применением алгоритмов компьютерного зрения, используя характерные яркостные и температурные особенности осколков упаковки, корпуса и составных частей ядерно- и радиационно опасного объекта.
СПОСОБ И УСТРОЙСТВО ДЛЯ ИДЕНТИФИКАЦИИ ЦЕЛЕВОГО ОБЪЕКТА НА ИЗОБРАЖЕНИИ | 2013 |
|
RU2637989C2 |
Беспилотный аппарат и комплекс наблюдения для него | 2016 |
|
RU2642202C1 |
Способ определения местоположения точечного источника гамма-излучения на местности | 2015 |
|
RU2620449C2 |
US 2017293036 A1, 12.10.2017. |
Авторы
Даты
2021-04-21—Публикация
2020-09-08—Подача