СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНОГО ЗОЛОТОМЕДНОГО ФЛОТОКОНЦЕНТРАТА Российский патент 2021 года по МПК C22B11/00 C22B3/06 C22B3/24 C22B15/00 

Описание патента на изобретение RU2749310C2

Изобретение относится к области металлургии драгоценных и цветных металлов, в частности к гидрометаллургической переработке сульфидного золотомедного флотоконцентрата.

Традиционной схемой извлечения драгоценных металлов из продуктов автоклавного, бактериального, термического окисления, является цианирование твердого остатка после предварительной щелочной обработки, проводимой с целью снижения расхода цианида, связанного с его гидролизом в кислых растворах и присутствием цианисидов (см. Лодейщиков В.В. Технология извлечения золота и серебра из упорных руд / В.В. Лодейщиков: в двух томах. - Иркутск: ОАО «Иргиредмет», 1999. Т. 1. - 342 с., Т. 2. - 452 с.).

Проведение операции щелочной обработки вызывает необходимость использования дорогостоящего оборудования и повышенного расхода щелочных реагентов. Кроме этого, продолжительность процесса цианирования твердого остатка после предварительной щелочной обработки значительна (не менее 20 часов), что обуславливает необходимость использования соответствующего объема агитационного оборудования.

Альтернативным способом извлечения драгоценных металлов из минерального сырья в кислой среде является использование растворителей на основе тиоцианата (роданида) (см. А.Г. Холмогоров, Г.Л. Пашков, О.Н. Кононова «Нецианистые растворители для извлечения золота из золотосодержащих продуктов» // Химия в интересах устойчивого развития, 9 (2001) стр. 293-298).

Известен способ (см. Патент RU 2352650, 14.06.2007 «Экологически чистый способ комплексного извлечения цветных, редких и драгоценных металлов из руд и материалов») извлечения цветных, редких и драгоценных металлов из руд и материалов. Способ включает выщелачивание руд в две стадии. На первой стадии обработку руд и материалов ведут первым оборотным выщелачивающим раствором с введением серной кислоты и солей трехвалентного железа в количестве, обеспечивающем в конце выщелачивания в продуктивном растворе мольное соотношение концентраций ионов трехвалентного и двухвалентного железа не ниже 1:1.

На второй стадии обработку руд и материалов проводят вторым оборотным выщелачивающим раствором с введением серной кислоты, солей роданидов и трехвалентного железа в количестве, обеспечивающем в продуктивном растворе мольное соотношение концентраций ионов роданида и трехвалентного железа не выше 2:1 и не ниже 0,5:1, а соотношение концентраций ионов трехвалентного и двухвалентного железа также не ниже 1:1. Затем проводят отдельную переработку продуктивных растворов каждой стадии химическим осаждением, сорбцией и/или электролизом и возврат оборотных растворов на соответствующую стадию.

Недостатками данного способа являются сложная технологическая схема, низкая степень окисления сульфидов, низкое извлечение золота.

Известен способ-аналог (см. Патент WO 96/29439, 26.09.1996), предусматривающий извлечение цветных и драгоценных металлов из упорного минерального сырья. Способ включает в себя сверхтонкое измельчение до крупности Р80% класса минус 20 мкм и менее, выщелачивание минерального сырья раствором серной кислоты, с ионами трехвалентного железа при атмосферном давление, с барботажем кислородсодержащего газа в реакторе открытого типа при температуре 90-95°С. Извлечение золота из твердого остатка по способу-прототипу проводят традиционным методом - щелочная обработка твердого окисленного остатка с последующим цианированием, а цветные металлы извлекаются известными способами.

Недостатком данного способа является низкое и продолжительное извлечение золота в процессе цианистого выщелачивания, а также высокая себестоимость готовой продукции, связанная с большим количеством технологических операций.

Задачей, на решение которой направлено заявляемое изобретение, является повышение степени и скорости извлечения золота, снижение затрат на переработку сульфидного золотомедного флотоконцентрата.

Поставленная задача решается за счет технического результата, который заключается в создании благоприятных условий при извлечении золота в процессе их гидрометаллургической переработки сульфидного золотомедного флотоконцентрата.

Технический результат достигается тем, что в известном способе минеральное сырье подвергают сверхтонкому измельчению до крупности Р80% класса минус 20 мкм и менее, выщелачивают раствором серной кислоты, с ионами трехвалентного железа при атмосферном давление, с барботажем кислородсодержащего газа в реакторе открытого типа при температуре 90-95°С, согласно изобретению, во время окислительного выщелачивания или по его завершению в пульпу вводят тиоцианат-цианидную смесь, проводят выщелачивание золота в присутствии сорбента, насыщенный золотом сорбент отделяют от пульпы, обеззолоченную пульпу обезвоживают, растворы направляют на операцию извлечения меди известными способами, после чего растворы направляют в процесс окислительной обработки с целью рециркуляции серной кислоты и трехвалентного железа.

Указанный технический результат достигается тем, что в качестве растворителя золота применяют смесь кислых, щелочных или нейтральных растворов тиоцианата и цианида щелочных металлов. Также для подкрепления выщелачивающей системы реагентами растворителями, возможно применение растворов из наливных хвостохранилищ цианистых обогатительных фабрик. Молярное отношение растворителей SCN:CN в процессе выщелачивания золота поддерживают в диапазоне 1:0,2÷1.

В процессе окисления сульфидных продуктов, образуется элементная сера, которая способна окклюдировать недоокисленные сульфиды и частицы золота, ограничивая доступ растворителя к поверхности золота, тем самым снижая извлечение при последующем выщелачивании.

Добавление цианида приводит к образованию тиоцианата при взаимодействии с соединениями серы, включая элементную серу по реакциям 1, 2, 3.

Образующийся тиоцианат увеличивает общую концентрацию тиоцианата в выщелачивающем растворе, а также способствует увеличению извлечения золота за счет снятия образовавшихся при окислении серных пленок на частицах золота и сульфидах.

Указанный технический результат достигается тем, что выщелачивание драгоценных металлов тиоцинат-цианидным растворителем проводят при рН 0,5-3 и температуре выщелачивающей системы 60-95°С.

Указанный технический результат также достигается тем, в качестве окислителя используют сульфат трехвалентного железа, требуемая концентрация, которого поддерживается за счет окисления сульфидов и других реакций в процессе предварительной окислительной обработки упорного сульфидного золотомедного флотоконцентрата. Молярное отношение тиоцианата к окислителю в виде трехвалентного железа SCN:Fe3+ поддерживают в диапазоне 1:1,8÷5.

Указанный технический результат также достигается тем, что процесс выщелачивания золота ведут в присутствии сорбента (в качестве сорбента используют активированный уголь или ионообменные смолы) из расчета 1-10 об.%. Продолжительность процесса тиоцианат-цианидного выщелачивания в зависимости от содержания золота составляет 30-120 минут.

Сравнение заявляемого способа с прототипом показывает, что заявляемый способ отличается от известного возможностью совмещения процессов окисления, растворения золота тиоцианат-цианидной смесью и его сорбции на углеродные сорбенты или ионообменные смолы при рН 0,5-3 и температуре 60-95°С, исключением промежуточной операции переработки продукта окисления - щелочной обработки, а также возможностью использования в качестве растворителя золота растворы из наливных хвостохранилищ цианистых золотизвлекательных фабрик.

Для экспериментальной проверки заявляемого способа использовали флотоконцентрат полученный при обогащении золотомедных сульфидных руд. Состав концентрата приведен в таблице 1.

Указанный флотоконцентрат измельчили в лабораторной бисерной мельнице до класса крупности 80% минус 20 мкм.

Измельченный продукт подвергнули кислотно-кислородному окислению в 12 литровом реакторе при следующих условиях: температура 90-95°С, интенсивность перемешивания 650 об/мин, исходная концентрация серной кислоты 50 г/л, соотношении Ж:Т=4:1, непрерывная продувка пульпы кислородом.

После окисления, пульпу разделили на частные пробы для проведения технологических опытов.

Первая серия опытов проведена с целью определения влияния концентраций реагентов растворителей на полноту и продолжительность растворения золота.

Исследования проведены в агитационном режиме при температуре 90-95°С, рН 0,6±0,1, концентрации Fe3+ - 2,5 г/л.

Результаты исследований по влиянию концентраций реагентов растворителей на полноту и продолжительность растворения золота, представлены в таблице 2.

Вторая серия опытов проведена с целью определения влияния температуры на полноту и продолжительность растворения золота.

Исследования проведены в агитационном режиме при температуре 40, 60, 80, 90°С, концентрации SCN- - 0,01 моль/л, CN- - 0,01 моль/л.

Результаты исследований по влиянию температуры на полноту и продолжительность растворения золота, представлены в таблице 3.

Третья серия опытов проведена с целью сравнения технологических показателей при переработке исследуемого концентрата по заявляемому способу и способу-прототипу.

Выщелачивание исследуемого концентрата по заявляемому способу проведено, при отношении Ж:Т=3:1, температуре 90°С, Fe3+ - 2,5 г/л, SCN- - 0,01 моль/л, CN- - 0,01 моль/л, загрузке активированного угля 5% об., агитации в течение 1 часа.

Выщелачивание исследуемого концентрата по способу-прототипу проведено после щелочной обработки при отношении Ж:Т=3:1, температуре 25°С, рН - 11, концентрации CN- - 0,04 моль/л, загрузке активированного угля 5% об., агитации в течение 24 часов.

Результаты выщелачивания исследуемого концентрата в условиях заявляемого способа и способа-прототипа, представлены в таблице 4.

Показатели по извлечению золота, достигнутые при использовании заявляемого и известного способов переработки исследуемого концентрата представлены в таблице 5.

Данные, приведенные в таблице 5, показывают, что использование заявляемого способа позволяет, повысить извлечение золота, снизить капитальные затраты за счет сокращения продолжительности выщелачивания, снизить эксплуатационные затраты при отработке месторождения за счет снижения расходов реагентов и электроэнергии.

Похожие патенты RU2749310C2

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА И МЕДИ ИЗ СУЛЬФИДНОГО ЗОЛОТОМЕДНОГО ФЛОТОКОНЦЕНТРАТА 2019
  • Набиулин Руслан Нурлович
  • Богородский Андрей Владимирович
  • Баликов Станислав Сергеевич
RU2749309C2
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ ЗОЛОТОМЕДНЫХ КОНЦЕНТРАТОВ С ИЗВЛЕЧЕНИЕМ ЗОЛОТА 2009
  • Коблов Аркадий Юрьевич
  • Дементьев Владимир Евгеньевич
RU2418082C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО БЛАГОРОДНЫЕ МЕТАЛЛЫ 2010
  • Гудков Александр Сергеевич
  • Минеев Геннадий Григорьевич
  • Богородский Андрей Владимирович
RU2447166C2
ЭКОЛОГИЧЕСКИ ЧИСТЫЙ СПОСОБ КОМПЛЕКСНОГО ИЗВЛЕЧЕНИЯ ЦВЕТНЫХ, РЕДКИХ И ДРАГОЦЕННЫХ МЕТАЛЛОВ ИЗ РУД И МАТЕРИАЛОВ 2007
  • Гуров Владимир Алексеевич
RU2352650C2
СПОСОБ ПЕРЕРАБОТКИ СЫРЬЯ, СОДЕРЖАЩЕГО БЛАГОРОДНЫЕ МЕТАЛЛЫ И СУЛЬФИДЫ 2013
  • Богородский Андрей Владимирович
  • Золотарёв Филипп Дмитриевич
RU2547056C1
СПОСОБ ПЕРКОЛЯЦИОННОГО ИЗВЛЕЧЕНИЯ СЕРЕБРА И ЗОЛОТА ИЗ РУД И ОТВАЛОВ 1994
  • Поташников Ю.М.
  • Чурсанов Ю.В.
  • Луцик В.И.
  • Фильцев Ю.Н.
  • Глотов Г.Н.
  • Ларин В.К.
RU2081193C1
КОМБИНИРОВАННЫЙ СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ СУЛЬФИДНЫХ РУД 2012
  • Заболоцкий Александр Иванович
  • Гребнев Геннадий Сергеевич
  • Федотов Александр Дмитриевич
  • Станков Дмитрий Владимирович
RU2502814C2
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ СЕРЕБРОСОДЕРЖАЩИХ СУЛЬФИДНЫХ РУД КОНЦЕНТРАТОВ И ВТОРИЧНОГО СЫРЬЯ 2017
  • Меркулов Игорь Александрович
  • Тихомиров Денис Валерьевич
  • Жабин Андрей Юрьевич
  • Апальков Глеб Алексеевич
  • Смирнов Сергей Иванович
  • Дьяченко Антон Сергеевич
  • Малышева Виктория Андреевна
  • Кудрина Юлия Вениаминовна
RU2657254C1
СПОСОБ ИЗВЛЕЧЕНИЯ ДРАГОЦЕННЫХ МЕТАЛЛОВ ИЗ УПОРНОГО ЗОЛОТОСУЛЬФИДНОГО СЫРЬЯ 2015
  • Болдырев Андрей Валерьевич
  • Богородский Андрей Владимирович
  • Емельянов Юрий Евгеньевич
  • Баликов Станислав Васильевич
RU2625146C2
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ МЕТАЛЛСОДЕРЖАЩЕГО МИНЕРАЛЬНОГО СЫРЬЯ 2010
  • Фомин Александр Михайлович
  • Хадарцев Олег Мисостович
  • Тюремнов Александр Вадимович
RU2476610C2

Реферат патента 2021 года СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНОГО ЗОЛОТОМЕДНОГО ФЛОТОКОНЦЕНТРАТА

Изобретение относится к гидрометаллургической переработке сульфидного золотомедного флотоконцентрата. Проводят сверхтонкое измельчение до крупности Р80% класса минус 20 мкм и менее, предварительную окислительную обработку раствором серной кислоты с добавлением ионов трехвалентного железа в качестве окислителя при атмосферном давлении и с барботажем кислородсодержащего газа в реакторе открытого типа при температуре 90-95°С. Во время предварительной окислительной обработки или по ее завершению в пульпу вводят тиоцианат-цианидную смесь в качестве растворителя золота и проводят сорбционное выщелачивание золота при атмосферном давлении и температуре 60÷95°С, рН 0,5-3, в течение 30-120 мин. Молярное отношение SCN:CN поддерживают 1:0,2÷1, а молярное отношение тиоцианата к окислителю в виде трехвалентного железа SCN:Fe3+ поддерживают 1:1,8÷5. Насыщенный золотом сорбент отделяют от пульпы, обеззолоченную пульпу обезвоживают, а раствор направляют на извлечение меди, после извлечения меди раствор возвращают в процесс предварительной окислительной обработки. Способ повышает скорость и степень извлечения золота, снижает капитальные затраты путем сокращения времени выщелачивания и снижает эксплуатационные затраты за счет снижения расходов реагентов и электроэнергии. 4 з.п. ф-лы, 5 табл.

Формула изобретения RU 2 749 310 C2

1. Способ переработки сульфидного золотомедного флотоконцентрата, включающий сверхтонкое измельчение до крупности Р80% класса минус 20 мкм и менее, предварительную окислительную обработку раствором серной кислоты с добавлением ионов трехвалентного железа в качестве окислителя при атмосферном давлении и с барботажем кислородсодержащего газа в реакторе открытого типа при температуре 90-95°С, отличающийся тем, что во время предварительной окислительной обработки или по ее завершению в пульпу вводят тиоцианат-цианидную смесь в качестве растворителя золота и проводят сорбционное выщелачивание золота при атмосферном давлении и температуре 60÷95°С, рН 0,5-3, в течение 30-120 минут, при этом молярное отношение SCN:CN поддерживают в диапазоне 1:0,2÷1, а молярное отношение тиоцианата к окислителю в виде трехвалентного железа SCN:Fe3+ поддерживают в диапазоне 1:1,8÷5, после чего насыщенный золотом сорбент отделяют от пульпы, обеззолоченную пульпу обезвоживают, а раствор направляют на извлечение меди, после извлечения меди раствор возвращают в процесс предварительной окислительной обработки.

2. Способ по п. 1, отличающийся тем, что применяют смесь растворов тиоцианата и цианида щелочных металлов.

3. Способ по п. 1, отличающийся тем, что для подкрепления сорбционного выщелачивания реагентами растворителями применяют оборотные растворы, в том числе из наливных хвостохранилищ цианистых обогатительных фабрик.

4. Способ по п. 1, отличающийся тем, что концентрацию сульфат трехвалентного железа поддерживают за счет окисления сульфидов в процессе предварительной окислительной обработки упорного сульфидного сырья.

5.Способ по п. 1, отличающийся тем, в качестве сорбента используют активированный уголь или ионообменные смолы из расчета 1-10 об.%.

Документы, цитированные в отчете о поиске Патент 2021 года RU2749310C2

WO 9629439 A1, 26.09.1996
СПОСОБ ПОЛУЧЕНИЯ ЗОЛОТА ИЗ СУЛЬФИДНЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД 2008
  • Смолянинов Владислав Владимирович
  • Шехватова Галина Владимировна
  • Смагин Вадим Анатольевич
RU2385959C1
Механизм для поворачиваний железнодорожных поворотных кругов 1927
  • Калашников Н.А.
SU9453A1
Способ дубления голья 1927
  • О. Шмидт
SU9842A1
WO 2013163712 A1, 07.11.2013.

RU 2 749 310 C2

Авторы

Лукьянов Андрей Александрович

Богородский Андрей Владимирович

Баликов Станислав Сергеевич

Селезнев Алексей Николаевич

Даты

2021-06-08Публикация

2019-09-05Подача