Способ легирования кристаллов сульфида цинка железом или хромом Российский патент 2021 года по МПК C30B13/10 C30B29/48 H01S3/16 

Описание патента на изобретение RU2755023C1

Изобретение относится к области выращивания кристаллов.

Кристаллы сульфида цинка, легированные железом или хромом применяются для изготовления пассивных модуляторов в резонаторах лазеров ближнего инфракрасного диапазона, а также для изготовления активных элементов таких лазеров.

Известен способ легирования кристаллов селенида цинка и сульфида цинка железом [S. Mirov, A. Gallian, A. Martinez, V. Fedorov. Saturable absorbers for Q- switching of middle infrared laser cavities. Patent Application Publication US 2080101423 A1] - аналог, в котором на поверхность кристаллического ZnSe или ZnS наносится пленка железа, а собственно легирование производится путем диффузионного отжига. К недостаткам этого способа можно отнести неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования, а также сложность многостадийного процесса, включающего рост кристалла, нанесение пленки железа и собственно диффузионное легирование.

Известен способ легирования кристаллов халькогенидов цинка хромом или железом [С.С.Балабанов, Е.М. Гаврищук, В.Б. Иконников, С.А. Родин, Д.В. Савин. Способ получения легированных халькогенидов цинка. Международная заявка WO 2016024877 А1]-прототип, в котором на поверхность халькогенида цинка наносят пленку хрома или железа, затем на этой пленке формируют слой халькогенида цинка методом химического осаждения из газовой фазы и полученную трехслойную структуру подвергают диффузионному отжигу. Основной недостаток этого способа - неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования. В легированных железом кристаллах сульфида цинка, полученных по способу-прототипу, отношение текущей концентрации металла (железа или кобальта) Сme к максимальной Сmax меняется на два порядка от края изделия к его середине даже при небольшой (5-8 мм) толщине изделия. К недостаткам способа-прототипа следует отнести и сложность многостадийного процесса.

Задачей предлагаемого решения является создание способа легирования кристаллов сульфида цинка железом или хромом, в котором распределение легирующей добавки в кристалле является однородным.

Поставленная задача решается в предлагаемом способе легирования кристаллов сульфида цинка железом или хромом за счет того, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.

Введение легирующих добавок в виде моносульфидов металлов обеспечивает валовое содержание железа или хрома в кристаллах совпадающее с содержанием добавок в исходной загрузке, что подтверждается данными, приведенными в Таблице, где концентрация Fe и Сr во всех случаях измерена в центре кристалла (как по длине, так и по радиусу). Это обусловлено близкими скоростями испарения ZnS, FeS и CrS, что предотвращает концентрирование или разбавление лигатуры в процессе роста за счет потерь ZnS на испарение, характерных для роста кристаллов ZnS из расплава.

Применение вертикальной зонной плавки позволяет выращивать кристаллы без радиального распределения легирующей добавки. При этом эффективные коэффициенты распределения железа, хрома и кобальта при вертикальной зонной плавке невелики, что обеспечивает не более чем двукратное изменение концентрации по длине кристалла в направлении роста, что экспериментально подтверждено в кристаллах длиной до 200 мм и диаметром до 40 мм.

Пример 1.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,61×1017 см-3 (Таблица, строка 1).

Пример 2.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в за- грузке составляла 5,0×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,28×1018 см-3 (Таблица, строка 2).

Пример 3.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,21×1019 см3 (Таблица, строка 3).

Пример 4.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,58×1017 см-3 (Таблица, строка 4).

Пример 5.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 5×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,21×1018 см-3 (Таблица, строка 5).

Пример 6.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,19×1019 см-3 (Таблица, строка 6). На Фиг. 1 показаны (а) полированный образец из полученного кристалла ZnS:Cr и (б) оптические элементы, изготовленные из этого кристалла.

Похожие патенты RU2755023C1

название год авторы номер документа
Способ легирования кристаллов селенида цинка хромом 2020
  • Борисенко Дмитрий Николаевич
  • Борисенко Елена Борисовна
  • Колесников Николай Николаевич
  • Денисенко Дмитрий Сергеевич
  • Тимонина Анна Владимировна
  • Фурсова Татьяна Николаевна
  • Хамидов Александр Михайлович
RU2751059C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ХАЛЬКОГЕНИДОВ ЦИНКА 2014
  • Балабанов Станислав Сергеевич
  • Гаврищук Евгений Михайлович
  • Иконников Владимир Борисович
  • Родин Сергей Александрович
  • Савин Дмитрий Вячеславович
RU2636091C1
Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой 2019
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
  • Берзигиярова Надежда Сергеевна
  • Борисенко Елена Борисовна
RU2701832C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ПЕРЕХОДНЫМИ МЕТАЛЛАМИ ХАЛЬКОГЕНИДОВ ЦИНКА 2016
  • Балабанов Станислав Сергеевич
  • Гаврищук Евгений Михайлович
RU2631298C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ ХАЛЬКОГЕНИДОВ ЦИНКА И ИХ ТВЕРДЫХ РАСТВОРОВ 2013
  • Гаврищук Евгений Михайлович
  • Иконников Владимир Борисович
  • Балабанов Станислав Сергеевич
RU2549419C1
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ МАТЕРИАЛОВ ИЗ ХАЛЬКОГЕНИДОВ ЦИНКА И КАДМИЯ 2002
  • Гарибин Е.А.
  • Демиденко А.А.
  • Дунаев А.А.
  • Егорова И.Л.
  • Миронов И.А.
RU2240386C2
Тигель для выращивания кристаллов на затравку 2019
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
RU2716447C1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ХАЛЬКОГЕНИДОВ ТИПА AB Использование: в приборостроении, квантовой электронике, лазерной спектроскопии и т 1991
  • Кобзарь-Зленко В.А.
  • Иванов Н.П.
  • Файнер М.Ш.
  • Комарь В.К.
RU2031983C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОСОДЕРЖАЩЕЙ ДОБАВКИ ДЛЯ ЛЕГИРОВАНИЯ МЕТАЛЛОВ 2006
  • Дьяченко Александр Николаевич
  • Крайденко Роман Иванович
RU2318885C1
СЕРИЙНЫЙ СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАЛЛИЙ-СКАНДИЙ-ГАДОЛИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ 2006
  • Титов Александр Николаевич
  • Крутова Лариса Ивановна
  • Ветров Василий Николаевич
  • Игнатенков Борис Александрович
  • Миронов Игорь Алексеевич
RU2324018C2

Иллюстрации к изобретению RU 2 755 023 C1

Реферат патента 2021 года Способ легирования кристаллов сульфида цинка железом или хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ позволяет получать кристаллы ZnS с однородным распределением легирующей добавки по их длине и концентрацией легирующего металла (железа или хрома), совпадающей с его содержанием в исходной загрузке. 1 ил., 1 табл., 6 пр.

Формула изобретения RU 2 755 023 C1

Способ легирования кристаллов сульфида цинка железом или хромом, отличающийся тем, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755023C1

KIM C et al., Room-temperature, mid-infrared Cr2+ :ZnSe and Cr2+ :ZnS random powder lasers, "Proc
SPIE, Solid State Lasers XVII: Technology and Devices", 2008, Vol.6871, 68712R, реферат, раздел 2 "Powder samples preparation"
LAWNICZAK-JABLONSKA K.et al., Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from

RU 2 755 023 C1

Авторы

Борисенко Дмитрий Николаевич

Борисенко Елена Борисовна

Колесников Николай Николаевич

Тимонина Анна Владимировна

Фурсова Татьяна Николаевна

Хамидов Александр Михайлович

Даты

2021-09-09Публикация

2021-01-11Подача