Устройство для измерения температуры сопла жидкостного ракетного двигателя Российский патент 2021 года по МПК F02K9/64 

Описание патента на изобретение RU2758022C1

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например, жидкостных ракетных двигателей (ЖРД).

Известно, что ЖРД эксплуатируются в экстремальных условиях, в условиях высоких температур и давлений в газовых трактах при весьма жестких ограничениях по текущим параметрам. В таких условиях даже кратковременный выход параметра (параметров) за пределы допустимых значений способен привести к выходу двигателя из строя. Поэтому весьма важно при возникновении неисправности в работе ЖРД как можно быстрее определить ее, определить степень ее влияния на работу ЖРД и принять управляющее решение - либо продолжить работу, либо отключить неисправный узел, либо отключить ЖРД.

Весьма важна быстрота реакции на такие случаи, которая должна обеспечиваться системой управления ЖРД. В то же время инерционность известных систем диагностики зачастую не позволяет осуществить функцию скорейшего отключения ЖРД в случае возникновения такого класса неисправностей.

Известен способ измерения температуры стенки ЖРД посредством установки термопар на внешнюю стенку (см., например, «Испытания ЖРД» под ред. Левина В.Я. Москва, «Машиностроение», 1981 г., с. 133). В результате анализа данного метода стоит отметить, что термопары обладают весьма высокой инерционностью и невозможно их применение внутри двигателя, а температуру внутренней поверхности стенки возможно измерить только с помощью косвенных измерений. Вследствие чего можно сделать вывод о том, что их применение не может дать точных показаний температуры внутренней стенки сопла с высокой точностью и скоростью, необходимой для использования системах управления.

Известно устройство по патенту №1840369 RU, «Устройство для измерения основных параметров малоразмерного ракетного двигателя», которое содержит сопло, несколько электродов, первичным из которых является стенка сопла, а вторичным являются электроды, расположенные в зоне течения продуктов сгорания и соединенные с измерительной цепью. С целью повышения точности измерения за счет увеличения абсолютной величины разности потенциалов, вторичный электрод установлен за срезом сопла и выполнен в виде конуса с углом у основания большим или равным 45°, причем величина диаметра основания конуса больше величины диаметра среза сопла.

Основным недостатком указанного аналога является низкая точность измерения температуры из-за зашумленности первичного сигнала.

Ближайшим аналогом заявляемого изобретения является полезная модель по патенту №185328 RU «Устройство охлаждения ракетного двигателя», которое включает камеру сгорания и сопло, на обращенную ко внутреннему объему поверхность камеры сгорания и сопла, выполненных из электропроводящих и жаропрочных материалов, нанесен слой из материала с низкой работой выхода, при этом эмиссионный слой, камера сгорания и сопло образуют катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник напряжения, анод находится в механическом контакте с соплом через слой электроизоляции.

Устройство по ближайшему аналогу работает следующим образом.

При работе ракетного двигателя в камере сгорания происходит процесс горения горючего и окислителя с образованием смеси газа, состоящего из продуктов сгорания - рабочего тела. При этом начинает нагреваться стенка камеры сгорания, стенка сопла и эмиссионный слой.

В результате, с эмиссионного слоя начинают выходить электроны, охлаждая эмиссионный слой и стенку камеры сгорания и сопла. Через поток рабочего тела электроны термоэмиссии попадают на анод. От анода через источник напряжения электроны возвращаются в эмиссионный слой и цикл охлаждения повторяется заново.

Основным недостатком указанного ближайшего аналога является низкая точность измерения температуры внутренней поверхности стенки сопла ЖРД в интересующих местах, в том числе в критическом сечении сопла из-за отсутствия локализации термоэлектронов приходящих на анод устройства

Технической задачей заявляемого изобретения является повышение точности измерения температуры стенки и сопла ЖРД в интересующих местах.

Указанная техническая задача решается тем, что в устройство для измерения температуры стенок сопла ракетного двигателя, которое содержит выполненное из элетропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода, при этом эмиссионный слой на поверхности сопла образует катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, при этом эмиссионный слой выполнен в форме кольца с центром на оси сопла шириной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс.

Техническим результатом, получаемым в результате применения изобретения, является повышение точности измерения температуры области критического сечения сопла ЖРД.

Пример реализации заявляемого способа представлен на Фиг 1.

На чертеже обозначены: 1 - сопло ЖРД, 2 - покрытие с низкой работой выхода (катод), 3 - электроизоляция, 4 - анод, 5 - источник напряжения, 6 -измерительный комплекс

Сопло 1 предназначено для сжигания топлива и создания реактивной тяги, 2 - покрытие с низкой работой выхода для испускания электронов в результате нагрева, при этом эмиссионный слой 2 с участком сопла 1 в области критического сечения образуют катод, электроизоляция 3 предназначена для изоляции катода от анода 4, 4 - анод предназначен для улавливания электронов из потока продуктов сгорания. Анод 4 обладает площадью, достаточной для восприятия всех термоэлектронов, вышедших с эмиссионного слоя 2, 5 - источник напряжения предназначен для создания разности потенциалов между анодом 3 и катодом и обеспечения направленного движения электронов из потока продуктов сгорания к аноду и от анода через измерительный комплекс 6 и источник электроэнергии 5 к катоду, 6 - измерительный комплекс предназначен для снятия показаний силы тока между катодом и анодом 4 для последующего вычисления значения температуры.

Изобретение работает следующим образом.

При работе ракетного двигателя будет происходить нагревание сопла 1, в том числе область критического сечения, с нанесенным на его поверхность эмиссионным слоем 2. С эмиссионного слоя 2 будут выходить термоэлектроны - будет происходить термоэлектронная эмиссия. Вышедшие электроны будут переходить на анод 4 через поток рабочего тела, а от анода к измерительному комплексу 6. Чем выше нагрев области критического сечения, тем выше ток термоэмиссии и ток, регистрируемый в измерительном комплексе 6. От измерительного комплекса 6 термоэлектроны через источник электроэнергии 5, обеспечивающий движение электронов в электрической цепи анод 4 - катод, будут возвращаться на катод, замыкая тем самым электрический контур.

Благодаря близкой к экспоненциальной зависимости термоэмиссии от температуры, небольшое увеличение температуры может приводить к существенному росту тока термоэмиссии. Причем ток термоэмиссии может на 1-2 порядка превосходить сторонние токи и шумы, что также повышает точность и надежность производимых измерений.

Например, при работе выхода электронов в 2 эВ и температуре стенки 1500 К, плотность тока эмиссии по Ричардсону составляет величину 51.79 А/см2. При увеличении температуры на 1 К плотность тока увеличивается до 52.40 А/см2 или на 0.4 А. При этом цена деления современных приборов измерения может составлять единицы мкА. Тогда точность измерений температуры заявляемым устройством в данном можно оценить в 0.00001 К по порядку величины.

Такая система измерения температуры внутри камеры сгорания ЖРД, обладает низкой инерционностью и высокой точностью, в условиях экстремальных температур и не оказывает существенного влияния на течение продуктов сгорания.

Высокий уровень снимаемых токов и чувствительность термоэмиссии к температуре позволяют с повышенной точностью производить измерения температуры.

На основе измеренных значений температуры можно прогнозировать остаточный ресурс ЖРД, в том числе и при многократном применении. Это может сильно увеличить надежность многоразовой аэрокосмической техники.

Таким образом, решается указанная выше техническая задача и достигается технический результат, который заключается в повышении точности измерения значений температуры области критического сечения сопла ЖРД. При этом обеспечивается высокая скорость реакции. Так же реализована возможность длительной работы в условиях экстремальных температур за счет охлаждения поверхности.

Похожие патенты RU2758022C1

название год авторы номер документа
Устройство для измерения температуры сопла ракетного двигателя 2021
  • Колычев Алексей Васильевич
  • Архипов Павел Александрович
  • Ренев Максим Евгеньевич
  • Савелов Виталий Андреевич
  • Керножицкий Владимир Андреевич
  • Матвеев Станислав Алексеевич
RU2766960C1
Устройство для измерения температуры лопаток газотурбинных двигателей 2021
  • Колычев Алексей Васильевич
  • Архипов Павел Александрович
  • Ренев Максим Евгеньевич
  • Савелов Виталий Андреевич
  • Керножицкий Владимир Андреевич
  • Матвеев Станислав Алексеевич
RU2769546C1
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2017
  • Колычев Алексей Васильевич
  • Керножицкий Владимир Андреевич
  • Елисеенко Александр Геннадиевич
RU2691702C2
КРЫЛО ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА В УСЛОВИЯХ ЕГО АЭРОДИНАМИЧЕСКОГО НАГРЕВА 2014
  • Керножицкий Владимир Андреевич
  • Колычев Алексей Васильевич
RU2572009C1
Охлаждаемый составной сопловой блок многокамерной двигательной установки 2021
  • Жижин Евгений Владимирович
  • Ревегук Анастасия Андреевна
  • Колычев Алексей Васильевич
RU2788489C1
УСТРОЙСТВО ОХЛАЖДЕНИЯ ЛОПАТОК ТУРБИНЫ ГАЗОТУРБИННОЙ УСТАНОВКИ 2014
  • Керножицкий Владимир Андреевич
  • Колычев Алексей Васильевич
  • Алтунин Виталий Алексеевич
RU2578387C2
СПОСОБ ОХЛАЖДЕНИЯ ЛОПАТОК ТУРБИНЫ ГАЗОТУРБИННОЙ УСТАНОВКИ 2014
  • Керножицкий Владимир Андреевич
  • Колычев Алексей Васильевич
RU2573551C2
КРЫЛО ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА В УСЛОВИЯХ ЕГО АЭРОДИНАМИЧЕСКОГО НАГРЕВА 2012
  • Керножицкий Владимир Андреевич
  • Атамасов Владимир Дмитриевич
RU2495788C2
ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2015
  • Дергачев Александр Анатольевич
  • Минасбеков Дэвиль Авакович
  • Смирнов Александр Сергеевич
  • Шестаков Антон Александрович
  • Чебаков Александр Владимирович
RU2583511C1
КРЫЛО ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА В УСЛОВИЯХ ЕГО АЭРОДИНАМИЧЕСКОГО НАГРЕВА 2012
  • Керножицкий Владимир Андреевич
  • Колычев Алексей Васильевич
  • Захаров Антон Гарриевич
RU2506199C1

Иллюстрации к изобретению RU 2 758 022 C1

Реферат патента 2021 года Устройство для измерения температуры сопла жидкостного ракетного двигателя

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например жидкостных ракетных двигателей (ЖРД). Предложено устройство для измерения температуры стенок сопла ракетного двигателя, которое содержит выполненное из элетропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода электронов, при этом эмиссионный слой на поверхности сопла образует катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, эмиссионный слой выполнен в форме кольца толщиной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс. Изобретение обеспечивает повышение точности измерения температуры в области критического сечения сопла ЖРД. 1 ил.

Формула изобретения RU 2 758 022 C1

Устройство для измерения температуры стенок сопла ракетного двигателя, которое содержит выполненное из электропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода, при этом эмиссионный слой на поверхности сопла образует катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, отличающееся тем, что эмиссионный слой выполнен в форме кольца с центром на оси сопла шириной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс.

Документы, цитированные в отчете о поиске Патент 2021 года RU2758022C1

СПОСОБ ГИБКИ В ШТАМПАХ 0
SU185328A1
СПОСОБ И УСТРОЙСТВО УПРАВЛЕНИЯ ПОТОКОМ В ОБЪЕМЕ СОПЛА РЕАКТИВНОГО ДВИГАТЕЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2006
  • Чувашев Сергей Николаевич
  • Петриенко Виктор Григорьевич
RU2323137C1
Печь для бани 2023
  • Рыжов Вадим Сергеевич
RU2809370C1
JP 2020165360 A, 08.10.2020.

RU 2 758 022 C1

Авторы

Колычев Алексей Васильевич

Архипов Павел Александрович

Ренев Максим Евгеньевич

Савелов Виталий Андреевич

Керножицкий Владимир Андреевич

Чернышов Михаил Викторович

Даты

2021-10-25Публикация

2021-02-05Подача