ОДНОРАЗОВЫЙ ЧИП-КАРТРИДЖ ДЛЯ ПРОВЕДЕНИЯ АМПЛИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ Российский патент 2021 года по МПК G01N1/31 C12Q1/6844 

Описание патента на изобретение RU2758719C1

Изобретение относится к области биотехнологии и предназначено для использования в компактном переносном приборе для проведения ПЦР в режиме реального времени. 

Из области техники известен прибор для анализа нуклеиновых кислот методом полимеразной цепной реакции в реальном времени, содержащее микрочип с теплопроводной подложкой, имеющей коэффициент теплопроводности более 1 Вт/см · K и коэффициент температуропроводности более 0,6 см2 /с, отделённой от зоны реакции на поверхности микрочипа с помощью промежуточного материала, и слоем жидкости, не смешивающейся с водой, которая удерживается на верхней поверхности теплопроводной подложки с помощью периферийного барьера (см. опубликованную заявку US 2011189683, Кл. C12M 1/34, опубл. в 2011 г.). Такое достаточно сложное устройство предполагает использование составного микрочипа с несколькими барьерами.

Известно устройство для детектирования капельной ПЦР-амплификации на основе микрожидкостного чипа, который представляет собой сэндвич-структуру, включающую основной лист, расположенный над ним верхний покровный лист и нижний лист, причем все три листа соединены и склеены двусторонней лентой (см. патент CN 109652298, Кл. C12M 1/00, опубл. в 2019 г.). В данном устройстве существует необходимость дополнительных реагентов и сложность технологического процесса изготовления чипа.

Наиболее близким аналогом к заявленному изобретению является одноразовый чип ПЦР, включающий пластину, которая имеет корпус, в котором расположены реакционные камеры, сообщающиеся с каналами; при этом каналы выполнены с возможностью герметизации, а в корпусе расположены шесть реакционных ячеек, каждая реакционная ячейка содержит: реакционную камеру, расширительную камеру, связанную с реакционной камерой, заправочное отверстие и выходное отверстие на лицевой поверхности чипа, заправочный и выходной каналы, герметизирующий клапан, расположенный в каждом канале и включающий толкатель и эластичный герметизирующий элемент, при этом пластина выполнена из поликарбоната или циклических полиолефинов (см. патент RU № 2703776, МПК C12Q 1/6806, опубл. в 2019 году). Каждый канал чипа содержит герметизирующие клапаны, перекрывающие заправочный и выходной каналы в чипе с помощью толкателя, который прижимает эластичный герметизирующий элемент к поверхности чипа. Рабочее положение чипа и термоциклёра вертикальное. Чип прижимается к термоциклёру с усилием 30 кгс (для исключения возможной деформации чипа в процессе термоциклирования). Работа с чипом предполагает его поворот на 90° после заправки для контакта с термоциклером и дополнительных усилий для прижима к нему, чтобы исключить протекание заправленной в реакционные камеры чипа жидкости. Реакционные ячейки расположены в один ряд, что приводит к необходимости увеличения размеров пластины чипа в длину. Специфика чипа и его использования обоснованы ограничивающими конструктивными признаками прибора.

Техническая проблема заключается в том, что описанные устройства не обеспечивают достижения высокой точности исследований при проведении анализа прибором ПЦР в «полевых» (не лабораторных) условиях в режиме реального времени, например, при выезде на дом к больному, в автомобиле, на улице. В них остается нерешенной задача упрощения средств исследования при высокой результативности. Решение данной задачи не должно ограничиваться только возможностью проведения амплификации нуклеиновых кислот в лабораторных условиях. Найденное решение должно давать возможность проводить различные исследования не только в лабораторных условиях, но и в местах, не предназначенных для медицинских целей.

Настоящее изобретение направлено на решение технической задачи повышения универсальности и компактности одноразовых чипов-картриджей с повышением их надежности при проведении различных исследований.

Решение поставленной технической задачи достигается за счет того, что в одноразовом чипе-картридже для проведения амплификации нуклеиновых кислот, выполненном в виде прозрачной пластины, содержащей реакционные лунки, сообщающиеся с заправочными отверстиями и отверстиями для выхода воздуха, и герметизирующие элементы для обеих сторон пластины, реакционные лунки расположены на пластине в два ряда, при этом заправочные отверстия и отверстия для выхода воздуха расположены с противоположных сторон реакционных лунок под углом к торцам пластины, причем заправочные отверстия и отверстия для выхода воздуха выполнены сложной ступенчатой формы, а герметизирующие элементы выполнены в виде плёнки с клейкой рабочей поверхностью, примыкающей к пластине, а пластина выполнена из полимерного материала, обладающего высокой биоинертностью, низкой автофлуоресценцией и высоким уровнем прохождения света. Пластина снабжена распложенными на её верхней поверхности пересекающимися дорожками, расположенными под углом к боковым граням пластины и доходящими до боковых торцов пластины. Чип-картридж снабжен направляющими пазами, предназначенными для фиксации пластины. Пластина снабжена сквозной вертикальной прорезью для отделения рабочей зоны и предназначенной для исключения потерь тепла в реакционных лунках. Чип-картридж изготовлен из полимера MAKROLON 2258.

Изобретение поясняется чертежами.

На фиг.1 изображен одноразовый чип-картридж для проведения амплификации нуклеиновых кислот, в изометрии. На фиг. 2 – то же, вид снизу. На фиг. 3 - то же, вид сверху. На фиг. 4 - сечение А-А на фиг. 2. На фиг. 5 приведено схематичное изображение устройства для использования одноразового чипа-картриджа при проведении амплификации нуклеиновых кислот.

Одноразовый чип-картридж для проведения амплификации нуклеиновых кислот представляет собой плоскую прозрачную пластину 1, изготовленную из полимерного материала, например, из полимерных гранул MAKROLON 2258. Для чипа-картриджа выбран материал с высокой биоинертностью, низкой автофлуоресценцией и высоким уровнем прохождения света. С нижней стороны в пластине выполнены реакционные лунки 2 (реакционные ячейки) для заправки исследуемыми образцами и реагентами. Количество лунок 2 на пластине 1 может варьироваться в зависимости от прибора, в котором будет использован чип-картридж. Каждая реакционная лунка 2 имеет заправочное отверстие 3 и отверстие 4 для выхода воздуха. Предпочтительно, чтобы отверстия 3 и отверстия 4 были расположены с разных сторон лунки 2 под углом к торцам пластины 1, что обеспечивает их максимально удаление друг от друга. Они выполнены сложной ступенчатой формы. Заправочное отверстие 3 может быть снабжено заливной воронкой 5 (фаской) и боковым относительно лунки 2 нижним скосом 6 (см. фиг. 4). Отверстие 4 также имеет боковой относительно лунки 2 нижний скос 7. На верхней поверхности пластины 1 целесообразно выполнить дорожки 8 (проточки). Дорожки 8 выполнены пересекающимися и расположены под углом к боковым граням пластины 1, при этом их концы доходят до боковых торцов пластины 1. Их форма и расположение обусловлены необходимостью исключения перекрестной контаминации между лунками 2 во избежание ложноположительных результатов. Одноразовый чип-картридж может быть снабжен пазами 9, предназначенными для фиксации пластины 1. Их можно разместить в разных местах пластины 1: сверху, снизу, спереди или сбоку в зависимости от конструкции прибора. Рабочая часть чипа-картриджа с лунками 2 может быть отделена от задней нерабочей зоны 10 сквозной вертикальной прорезью 11, предназначенной для исключения потерь тепла в лунках 2. Нижняя плоскость пластины 1 со стороны лунок 2 имеет герметизирующую плёнку (на фигуре не показано), например ПЦР пленку Sovteh P500, плотно прилегающую к поверхности пластины 1 и обеспечивающую полную герметизацию лунок 2 с нижней стороны пластины 1.

При изготовлении одноразовых чипов-картриджей проходят несколько важных этапов. Заготовку чипа-картриджа можно получать методом литья под давлением в пресс-формы из полимерных гранул MAKROLON 2258. Этот материал дает возможность получать пластины 1 с высокой прозрачностью и чистотой. После промывки и просушки на нижнюю плоскость пластины 1 с лунками 2 наклеивают герметизирующую плёнку (на фигуре не показано). Готовые чипы-картриджи укладывают в одноразовые фольгированные пакеты, туда кладут кусочек герметизирующей плёнки для верхних отверстий и запечатывают.

Одноразовый чип-картридж для проведения амплификации нуклеиновых кислот используют следующим образом. Чип-картридж заправляют реагентами, содержащими флуорофоры (флуоресцентные красители), с помощью дозатора или шприца с плоской иглой. Заправочное отверстие 3, как и отверстие 4 для выхода воздуха имеют ступенчатую форму. Такая форма отверстий 3 и 4 предотвращает возможное повреждение герметизирующей плёнки дозатором или иглой на нижней стороне пластины 1, которая герметизирует лунки 2. В одну лунку 2 (например, с габаритами: диаметр 7 мм и высотой 0,6 мм) помещается до 24 мкл жидкости (реагентов). Можно заливать и меньше реагентов, при этом не теряется качество полученного сигнала. Габариты лунки 2 могут быть разными: шире, тоньше или глубже, при этом важно, чтобы объем лунки 2 не изменился. Заправочные отверстия 3 расположены таким образом, чтобы иметь максимально возможное расстояния друг от друга во избежание возможной контаминации между лунками 2. Каждый чип-картридж в данном примере, изображенном на фиг. 1 – 3, имеет по шесть лунок 2. Две из них предполагается использовать для положительного и отрицательного контроля. Форма чипа-картриджа, его размеры и количество лунок 2 зависят от оптической системы, в которой будут использованы. После незначительной доработки оптического узла можно адаптировать любое количество лунок 2 на одном чипе-картридже.

После заправки всех лунок 2 герметизируют заправочные отверстия 3 и отверстия 4 для выхода воздуха. Для этого используют прозрачную плёнку с тонким слоем клея (на фигуре не показано). Плёнку клеящей стороной прикладывают к верхней поверхности пластины 1 и равномерно разглаживают. Этот метод позволяет с высокой эффективностью герметизировать отверстия 3 и 4, при этом лунки 2 окончательно герметизируются тоже, что позволяет избежать разгерметизации во время амплификации. Благодаря наличию заливных воронок 5 (фасок) в отверстиях 3 практически исключается попадание заливаемой жидкости на верхнюю поверхность пластины 1.

После герметизации чип-картридж вставляют в прибор для проведения амплификации нуклеиновых кислот. На фиг. 5 схематически показано использование одноразового чипа-картриджа. Пластину 1 с предварительно заправленными исследуемой пробой для анализа лунками 2 загружают в прибор через специальное отверстие, находящееся на передней панели амплификатора. При этом специальные пазы 9 на чипе-картридже должны совпасть с аналогичными пазами, расположенными на нагревательной пластине термоциклёра (на фигуре не показано). Чип-картридж плотно фиксируется внутри прибора специальным прижимным механизмом (на фигуре не показано), таким образом чтобы реакционные ячейки плотно прилегали к системе термоциклирования (на фигуре не показано). В процессе работы прибора после каждого цикла термоциклирования производят измерение уровня флуоресценции специальных флуоресцентных меток в исследуемом образце, при этом интенсивность излучения говорит о первоначальном количестве интересующих молекул в исследуемом образце. В приборе целесообразно использовать оптическую систему с узкополосными светодиодами 12, имеющими минимальный угол расходимости излучения. Светодиоды 12 расположены вдоль обоих боковых торцов прозрачного чипа-картриджа напротив каждой лунки 2, при этом во время амплификации происходит торцевое возбуждение флуорофоров. Для спектрального разделения возбуждающего излучения и излучения флуорофоров между светодиодами 12 и торцом пластины 1 установлены интерференционные светофильтры 13 с максимумами пропускания в диапазонах длин волн, соответствующих длинам волн поглощения красителей. В оптической системе обеспечено минимальное расстояние между возбуждающими светодиодами 12 и торцами пластины 1 для увеличения количества полезного излучения, проникающего внутрь чипа-картриджа.

Прием сигнала флуоресценции осуществляют с помощью оптической фокусирующей системы, расположенной непосредственно над лунками 2 и содержащей одну или несколько плоско-выпуклых линз 14, предназначенных для фокусировки излучения в плоскости фотоприёмного устройства 15. В приемном канале устройства 15 установлен интерференционный светофильтр со спектром пропускания, соответствующим спектрам излучения флуоресцентных красителей, и блокировки паразитного излучения светодиодов 12. Сигнал регистрируют фотоприёмным устройством 15. Он поступает в плату обработки сигнала, встроенный компьютер обрабатывает данные и выводит их на дисплей в виде графика (на фигуре не показано).

Одноразовый чип-картридж для проведения амплификации нуклеиновых кислот может быть использован в молекулярной диагностике. Его использование обеспечивает быстрое проведение исследования с большим количеством биологических компонентов, например, разных праймеров. Повышению эффективности исследования с одноразовым чипом-картриджем способствует материал пластины 1 с высокой биоинертностью, низкой автофлуоресценцией и высоким уровнем прохождения света, обеспечивающий возможность использования узкополосных светодиодов 12 с боковых торцов пластины 1. Что, в свою очередь, дает возможность значительно уменьшить габариты оптической системы и прибора в целом. Горизонтальное расположение чипа-картриджа в процессе проведения исследований способствует повышению равномерности прогревания и охлаждения образцов, исключает стекание жидкости в реакционных лунках 2 в одну сторону.

Таким образом, технический результат, достигаемый с использованием заявленного изобретения, заключается в повышении универсальности и компактности одноразовых чипов-картриджей с повышением их надежности при проведении различных исследований. Одноразовый чип-картридж способствует значительному уменьшению размеров прибора и дает возможность проводить различные исследования не только в лаборатории, но и в полевых условиях, например у постели больного в режиме реального времени.

Похожие патенты RU2758719C1

название год авторы номер документа
ПРИБОР ДЛЯ ПРОВЕДЕНИЯ АМПЛИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ 2020
  • Каникевич Дмитрий Владимирович
  • Пауль Станислав Юрьевич
  • Захарченко Павел Александрович
  • Горский Евгений Вячеславович
  • Колесниченко Кирилл Владимирович
RU2757987C1
ОПТИЧЕСКАЯ СИСТЕМА ДЛЯ ПРОВЕДЕНИЯ АМПЛИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ 2020
  • Каникевич Дмитрий Владимирович
RU2757988C1
ОДНОРАЗОВЫЙ КАРТРИДЖ ДЛЯ ИЗОТЕРМАЛЬНОЙ АМПЛИФИКАЦИИ 2022
  • Пауль Станислав Юрьевич
  • Лысенко Кирилл Вячеславович
  • Захарченко Павел Александрович
  • Горский Евгений Вячеславович
  • Абрамов Юрий Юрьевич
RU2797710C1
ОДНОРАЗОВЫЙ КАРТРИДЖ ДЛЯ ВЫДЕЛЕНИЯ НУКЛЕИНОВЫХ КИСЛОТ И ИХ ПОСЛЕДУЮЩЕЙ АМПЛИФИКАЦИИ 2022
  • Пономарев Владимир Александрович
  • Алябин Владимир Олегович
  • Каникевич Дмитрий Владимирович
  • Горский Евгений Вячеславович
RU2790849C1
ОДНОРАЗОВЫЙ ЧИП ДЛЯ ПРОВЕДЕНИЯ ПЦР АНАЛИЗА 2019
  • Вердиев Бахтияр Исраил Оглы
  • Семенов Анатолий Владиславович
  • Горский Евгений Вячеславович
  • Гущин Владимир Алексеевич
  • Ткачук Артем Петрович
  • Гинцбург Александр Леонидович
RU2703776C1
УСТРОЙСТВО ДЛЯ ИНТЕГРАЛЬНОГО АНАЛИЗА НУКЛЕИНОВЫХ КИСЛОТ В РЕАЛЬНОМ ВРЕМЕНИ И СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛЕВОЙ НУКЛЕИНОВОЙ КИСЛОТЫ С ЕГО ИСПОЛЬЗОВАНИЕМ 2010
  • Ким, Ю-Дзеонг
  • Коо, Ван-Лим
  • Ким, Дзонг-Хоон
  • Дзанг, Дае-Дзин
  • Сео, Дзин-Чеол
  • Ким, Сеонг-Юл
  • Парк, Хае-Дзоон
  • Парк, Хан Ох
RU2532853C2
СИСТЕМА ДЛЯ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ 2020
  • Пак Хан Ох
  • Ким Чен Каб
  • Ли Ян Вон
  • Пак Сан Рён
  • Чан Хе Джин
RU2800583C2
АВТОМАТИЗИРОВАННЫЙ ПРИБОР ДЛЯ ВЫДЕЛЕНИЯ, ОЧИСТКИ И АНАЛИЗА НУКЛЕИНОВЫХ КИСЛОТ МЕТОДОМ ПЦР-РВ 2020
  • Евстрапов Анатолий Александрович
  • Петров Дмитрий Григорьевич
  • Белов Юрий Васильевич
  • Воробьев Алексей Анатольевич
  • Казанцев Алексей Васильевич
  • Антифеев Иван Евгеньевич
  • Есикова Надежда Александровна
  • Зубик Александра Николаевна
  • Гермаш Наталия Николаевна
  • Белов Дмитрий Анатольевич
RU2784821C2
УНИВЕРСАЛЬНАЯ СИСТЕМА ПОДГОТОВКИ ОБРАЗЦОВ И ПРИМЕНЕНИЕ В ИНТЕГРИРОВАННОЙ СИСТЕМЕ АНАЛИЗА 2010
  • Джованович Стивен Б.
  • Нильсен Уильям Д.
  • Коэн Дэвид С.
  • Рекнор Майкл
  • Вангбо Маттиас
  • Ван Гельдер Эзра
  • Майлоф Ларс
  • Эль-Сисси Омар
RU2559541C2
УСТРОЙСТВО ДЛЯ АНАЛИЗА НУКЛЕИНОВЫХ КИСЛОТ ИЗ ОБРАЗЦОВ БИОЛОГИЧЕСКОГО МАТЕРИАЛА 2021
  • Каникевич Дмитрий Владимирович
  • Пауль Станислав Юрьевич
  • Захарченко Павел Александрович
  • Горский Евгений Вячеславович
RU2757986C1

Иллюстрации к изобретению RU 2 758 719 C1

Реферат патента 2021 года ОДНОРАЗОВЫЙ ЧИП-КАРТРИДЖ ДЛЯ ПРОВЕДЕНИЯ АМПЛИФИКАЦИИ НУКЛЕИНОВЫХ КИСЛОТ

Изобретение относится к области биотехнологии. Предложен одноразовый чип-картридж для проведения амплификации нуклеиновых кислот. Чип выполнен в виде прозрачной пластины с реакционными лунками и герметизирующими элементами для обеих сторон пластины. Лунки расположены на пластине в два ряда, при этом заправочные отверстия и отверстия для выхода воздуха расположены с противоположных сторон каждой из реакционных лунок под углом к торцам пластины, заправочные отверстия и отверстия для выхода воздуха выполнены ступенчатой формы. Герметизирующие элементы выполнены в виде примыкающей к пластине плёнки с клейкой рабочей поверхностью, пластина выполнена из полимерного материала, обладающего высокой биоинертностью, низкой автофлуоресценцией и высоким уровнем прохождения света. Изобретение обеспечивает повышение универсальности и компактности, надежности при проведении исследований, а также осуществление исследования в полевых условиях. 4 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 758 719 C1

1. Одноразовый чип-картридж для проведения амплификации нуклеиновых кислот, выполненный в виде прозрачной пластины, содержащей реакционные лунки, сообщающиеся с заправочными отверстиями и отверстиями для выхода воздуха, и герметизирующие элементы для обеих сторон пластины, отличающийся тем, что реакционные лунки расположены на пластине в два ряда, при этом заправочные отверстия и отверстия для выхода воздуха расположены с противоположных сторон каждой из реакционных лунок под углом к торцам пластины, причем заправочные отверстия и отверстия для выхода воздуха выполнены ступенчатой формы, как отражено на фиг. 4, а герметизирующие элементы выполнены в виде плёнки с клейкой рабочей поверхностью, примыкающей к пластине, а пластина выполнена из полимерного материала, обладающего высокой биоинертностью, низкой автофлуоресценцией и высоким уровнем прохождения света.

2. Чип-картридж по п.1, отличающийся тем, что пластина снабжена распложенными на её верхней поверхности пересекающимися дорожками, расположенными под углом к боковым граням пластины и доходящими до боковых торцов пластины.

3. Чип-картридж по п.1, отличающийся тем, что он снабжен направляющими пазами, предназначенными для фиксации пластины.

4. Чип-картридж по п.1, отличающийся тем, что пластина снабжена сквозной вертикальной прорезью для отделения рабочей зоны и предназначенной для исключения потерь тепла в реакционных лунках.

5. Чип-картридж по п.1, отличающийся тем, что он изготовлен из полимера MAKROLON 2258.

Документы, цитированные в отчете о поиске Патент 2021 года RU2758719C1

КАССЕТА ДЛЯ ОБРАЗЦОВ И АНАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ПРОВЕДЕНИЯ ОПРЕДЕЛЕННЫХ РЕАКЦИЙ 2016
  • Донован, Даррил
  • Мурсия, Энтони
RU2699612C2
АВТОМАТИЧЕСКАЯ СИСТЕМА ДЛЯ ПЦР В РЕАЛЬНОМ ВРЕМЕНИ ДЛЯ РАЗЛИЧНЫХ АНАЛИЗОВ БИОЛОГИЧЕСКОГО ОБРАЗЦА 2011
  • Парк Хан Ох
  • Ким Квон Сик
  • Ли Янг Вон
  • Ли Дзин Ил
  • Дзеонг Биунг Рае
  • Ким Дзонг Хоон
RU2562572C2
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
US 20030064507 A1, 03.04.2003
US 7442542 B2, 28.10.2008
ОДНОРАЗОВЫЙ ЧИП ДЛЯ ПРОВЕДЕНИЯ ПЦР АНАЛИЗА 2019
  • Вердиев Бахтияр Исраил Оглы
  • Семенов Анатолий Владиславович
  • Горский Евгений Вячеславович
  • Гущин Владимир Алексеевич
  • Ткачук Артем Петрович
  • Гинцбург Александр Леонидович
RU2703776C1
КОНСТРУКЦИЯ РАБОЧЕЙ ЗОНЫ КАРТРИДЖА ДЛЯ ПРОВЕДЕНИЯ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ 2017
  • Коростин Дмитрий Олегович
  • Гафуров Тимур Рашидович
  • Ребриков Денис Владимирович
RU2658600C1

RU 2 758 719 C1

Авторы

Пауль Станислав Юрьевич

Каникевич Дмитрий Владимирович

Горский Евгений Вячеславович

Даты

2021-11-01Публикация

2020-12-22Подача