Способ получения углеродного антифрикционного покрытия на контактирующих трущихся поверхностях в условиях эксплуатации Российский патент 2021 года по МПК F16C33/12 F16C33/14 F16C33/16 C10M125/02 

Описание патента на изобретение RU2760987C1

Изобретение относится к различным областям машиностроения (автомобильное, автотракторное, энергетическое и т.д.), и может быть использовано как способ создания антифрикционных рабочих поверхностей элементов тяжелонагруженных узлов трения (например, подшипников скольжения и качения).

Известен способ получения углеродного покрытия на основе алмазоподобного материала с аморфной структурой, который содержит включения алмазной фазы и представляет собой чистый углерод (заявка на изобретение РФ 96110601 А от 05.06.1996). Покрытие материала получено методом плазмохимического осаждения углерода из потока углеродсодержащих активных частиц формируемого в плазме СВЧ-разряда в режиме электронно-циклотронного резонанса. Известен метод модификации поверхности подшипника скольжения (Европатент ЕР 1070207 (А1) 2001-01-24) Покрытие получено методом порошковой формовки из спеченного карбида кремния и содержит кристаллический графитовый слой на поверхности и слой из алмазных частиц. Известно также антифрикционное покрытие (патент РФ 2230238 С1 от 25.12.2002), получаемое методом импульсной конденсации углеродной плазмы в сочетании с дополнительным облучением ионами аргона или методом нанотехнологической молекулярной сборки, представляющее собой монокристаллическую углеродную пленку с легирующими атомами. Пленка легирована атомами азота (N).

Основной недостаток приведенных изобретений - применение сложной и дорогостоящей аппаратуры для получения углеродных антифрикционных поверхностей. Кроме этого, методы получения покрытий, и использование их в узлах трения разделены по времени, что приводит к значительным временным и технологическим затратам.

Задача предлагаемого изобретения - создание экономичного способа получения углеродного антифрикционного покрытия при упрощении технологического процесса.

Решение поставленной задачи обеспечивается предложенным способом, в котором получают углеродное антифрикционное покрытие на контактирующих трущихся поверхностях в условиях эксплуатации методом трибо-механического модифицирования поверхности трения в присутствии смазки Литол-24, в которую при 70-80°С вводят многослойный графен (10-15 слоев) в количестве 0,15 - 0,25 масс. %, полученный методом химической эксфолиации графита, затем смесь диспергируют в шаровой мельнице при температуре 20-25°С в течение 10 минут и полученную модифицированную смазку вводят в узлы трения с последующим получением углеродного антифрикционного покрытия при скоростях 500-1000 мин1, радиальных нагрузках 150-250 Н, температуре 20-40°С и времени протекания процесса 0,5-2 часов.

Способ осуществляют следующим образом: получают многослойный графен с помощью химической эксфолиации графита ГСМ 2. (Патент РФ №2648424 С1 от 26.03.2018 года «Способ получения графена и устройство для его осуществления). Готовят 10% масс, концентрат многослойного графена в масле И-20 с последующей обработкой ультразвуком с частотой 22 кГц в течение 30 мин. Полученный концентрат вводят в Литол-24 при 70-80°С, в количестве 0,2% масс. и диспергируют в шаровой мельнице при температуре 20-25° в течение 10 мин. Образцы для нанесения углеродного покрытия были изготовлены из стали ШХ-15 ГОСТ 2590-88 с твердостью HRC 60…62 в форме роликов диаметром 50 мм и шириной 12 мм. Шероховатость поверхности образцов Ra=800 нм (0,8 мкм). Радиальная нагрузка - 250 Н. Согласно предложенному способу, получение углеродного покрытия происходит непосредственно в процессе эксплуатации узла трения. Использовали узлы трения: ролик-ролик, подшипник скольжения (отношение внутреннего диаметра втулки подшипника к длине втулки равно 1) и роликовый подшипник качения №7203А. Образование углеродного покрытия начиналось по истечение 20 мин фрикционного взаимодействия. Методом комбинационного рассеяния света определили, что углеродное покрытие состоит из комбинации алмазных (sp3) и графитоподобных (sp2) связей. Такие покрытия являются аморфными. В случае преобладания sp3 связей покрытия обладают уникальными механическими свойствами: высокая твердость, низкий коэффициент трения и низкий износ. Благодаря аморфной структуре, углеродное покрытие не имеет границ между зернами, что позволяет ему быть очень гладким материалом. Измерение шероховатости углеродного покрытия подтвердило это утверждение. Толщина углеродного покрытия составила 130-150 нм. Помимо этого, углеродное покрытие обладает антикоррозионными и гидрофобными свойствами. Испытания данного углеродного покрытия в подшипнике скольжения и роликовом подшипнике качения показало уменьшение температуры нагрева втулки подшипника скольжения и внешнего кольца подшипника качения на 5-7°, по сравнению с поверхностью без покрытия. Массовый износ внешнего кольца подшипника качения в присутствии углеродного покрытия уменьшился в 2 раза, по сравнению с износом подшипника без углеродного покрытия. Момент силы трения в присутствии углеродного покрытия уменьшился с 5,8 до 4,5 условных единиц (таблица 1).

Содержание железа в смазке определялось методом атомно-абсорбционной спектроскопии. Содержание железа, после испытаний на углеродном покрытии, уменьшилось по сравнению с поверхностью без покрытия в 2 раза. Получение углеродного покрытия проводили на универсальной машине трения модели МИ - 1М, по схеме «ролик - ролик» при скорости вращения нижнего ролика 500 мин-1. Углеродное покрытие наносилось на ролики, изготовленные из стали ШХ - 15 ГОСТ 2590-88 твердостью HRC 60…62. Ролики имели размеры: диаметр - 50 мм, ширина -12 мм. Перед проведением испытаний ролики полировали до Ra=0,8 мкм. После получения углеродного покрытия ролик имел следующий вид:

Фиг. 1 - нижний ролик после нанесения покрытия увеличение x1

Фиг. 2 - нижний ролик после нанесения покрытия увеличение в 100 раз

Фиг. 3 - микрофотография исследованной поверхности ролика с углеродным покрытием, под микроскопом спектрометра DXR Raman Microscope Thermo Scientific (увеличение в 600 раз). Структуру углеродного покрытия определяли методом комбинационного рассеяния (КР) света. Спектры снимались на КР спектрометре DXR Raman Microscope Thermo Scientific (длина волны лазера λ=532 нм).

Фиг. 4 - КР спектр поверхности ролика без углеродного покрытия;

Фиг. 5 - КР спектр поверхности ролика с углеродным покрытием.

В спектре, от углеродного покрытия (Фиг. 5), присутствуют приблизительно одинаковые по интенсивности G-линия - 1565 см-1 (sp2 гибридизация углерода) и D-линия - 1340 см-1 (sp3 гибридизация углерода) и мало интенсивная 2D-линия - 2700 см-1. Данный спектр идентичен КР спектру аморфного углерода. В спектре от металлической поверхности ролика (Фиг. 4), перечисленные линии КР спектра отсутствуют. В ходе получения углеродного покрытия произошло изменение структуры многослойного графена и преобразование его в аморфный углерод. Определение шероховатости ролика и толщины углеродного покрытия осуществлялось профилометром модели 130 (таблица 2). Профили микронеровностей углеродного покрытия близки к ровной линии. Минимальные параметры шероховатости также характерны для данного покрытия (таблица 2).

Глубина впадин профиля на поверхности с углеродным покрытием уменьшилась на 0,116 мкм (0,858-0,742). Высота выступов профиля на поверхности с углеродным покрытием увеличилась на 0,161 мкм (0,654-0,493). Приблизительная толщина углеродного покрытия (0,116+0,161):2=0,138 мкм (138 нм)

Таким образом, заявленный способ позволяет получить антифрикционное углеродное покрытие непосредственно в ходе эксплуатации узлов трения, не прибегая к сложным технологическим операциям и использованию дорогостоящего оборудования.

Похожие патенты RU2760987C1

название год авторы номер документа
Способ получения смазочного материала с углеродными добавками 2023
  • Чеглаков Андрей Валерьевич
  • Ткачев Сергей Викторович
  • Дудаков Валерий Борисович
  • Грошкова Юлия Александровна
  • Мишаков Сергей Юрьевич
  • Хопин Пётр Николаевич
RU2807281C1
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ПОДШИПНИКОВ КАЧЕНИЯ 2009
  • Образцов Лев Николаевич
  • Еременко Николай Кондратьевич
  • Блюменштейн Валерий Юрьевич
  • Образцова Ираида Ивановна
RU2457239C2
АНТИФРИКЦИОННОЕ ПОКРЫТИЕ 2002
  • Левченко В.А.
  • Матвеенко В.Н.
  • Дроздов Ю.Н.
  • Буяновский И.А.
  • Петрова И.М.
  • Игнатьева З.В.
RU2230238C1
ТРИБОТЕХНИЧЕСКАЯ ДОБАВКА К СМАЗОЧНЫМ МАСЛАМ И ПЛАСТИЧНЫМ СМАЗКАМ 2007
  • Ладиков Валерий Владимирович
RU2319731C1
АНТИФРИКЦИОННОЕ ПОКРЫТИЕ 2019
  • Албагачиев Али Юсупович
  • Буяновский Илья Александрович
  • Левченко Владимир Анатольевич
  • Самусенко Владимир Дмитриевич
RU2728449C1
КОМПОЗИЦИЯ ДЛЯ ФОРМИРОВАНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ КИНЕМАТИЧЕСКИХ ПАР 2004
  • Белик Борис Михайлович
RU2271485C1
Смазочная композиция 1990
  • Калинин Алексей Алексеевич
  • Мельников Вячеслав Георгиевич
  • Тонкушина Светлана Вениаминовна
  • Замятина Надежда Ивановна
SU1735345A1
ТРИБОТЕХНИЧЕСКАЯ ДОБАВКА К СМАЗОЧНЫМ МАСЛАМ И ПЛАСТИЧНЫМ СМАЗКАМ 2004
  • Зарьков Сергей Александрович
  • Землянский Николай Александрович
  • Гончаренко Юрий Викторович
  • Никитин Владимир Александрович
  • Петров Владимир Маркович
RU2277577C1
СПОСОБ МОДИФИКАЦИИ ЖЕЛЕЗОСОДЕРЖАЩИХ ПОВЕРХНОСТЕЙ УЗЛОВ ТРЕНИЯ 2001
  • Нежданов В.И.
  • Какоткин В.З.
  • Балабин В.Н.
  • Ермаков В.И.
  • Лифенко Владимир Иванович
RU2201999C2
ПЛАСТИЧНЫЙ СМАЗОЧНЫЙ МАТЕРИАЛ 2004
  • Будтов Владилен Петрович
  • Гинзбург Борис Моисеевич
  • Точильников Давид Гершевич
  • Шепелевский Андрей Алексеевич
RU2268291C1

Иллюстрации к изобретению RU 2 760 987 C1

Реферат патента 2021 года Способ получения углеродного антифрикционного покрытия на контактирующих трущихся поверхностях в условиях эксплуатации

Изобретение относится к различным областям машиностроения (автомобильное, автотракторное, энергетическое и т.д.) и может быть использовано как способ создания углеродных антифрикционных рабочих поверхностей элементов тяжелонагруженных узлов трения (например, подшипников скольжения и качения). Способ осуществляют следующим образом: получают многослойный графен с помощью химической эксфолиации графита ГСМ 2. Готовят 10% масс. концентрат многослойного графена в масле И-20 с последующей обработкой ультразвуком с частотой 22 кГц в течение 30 мин. Полученный концентрат вводят в Литол-24 при 70-80°С, в количестве 0,2% масс. и диспергируют в шаровой мельнице при температуре 20-25° в течение 10 мин. Образцы для нанесения углеродного покрытия были изготовлены из стали ШХ-15 ГОСТ 2590-88 с твердостью HRC 60…62 в форме роликов диаметром 50 мм и шириной 12 мм. Шероховатость поверхности образцов Ra=800 нм (0,8 мкм). Радиальная нагрузка - 250Н. Согласно предложенному способу получение углеродного покрытия происходит непосредственно в процессе эксплуатации узла трения. Заявленный способ позволит получать антифрикционное углеродное покрытие непосредственно в ходе эксплуатации узлов трения, не прибегая к сложным технологическим операциям и использованию дорогостоящего оборудования. 5 ил., 2 табл.

Формула изобретения RU 2 760 987 C1

Способ получения углеродного антифрикционного покрытия на контактирующих трущихся поверхностях в условиях эксплуатации методом трибо-механического модифицирования поверхности трения в присутствии смазки Литол-24, в которую при 70-80°С вводят многослойный графен 10-15 слоев в количестве 0,15-0,25 масс. %, полученный методом химической эксфолиации графита, затем смесь диспергируют в шаровой мельнице при температуре 20-25°С в течение 10 минут и полученную модифицированную смазку вводят в узлы трения с последующим получением углеродного антифрикционного покрытия при скоростях 500-1000 мин1, радиальных нагрузках 150-250 Н, температуре 20-40°С и времени протекания процесса 0,5-2 часов.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760987C1

АНТИФРИКЦИОННОЕ ПОКРЫТИЕ 2002
  • Левченко В.А.
  • Матвеенко В.Н.
  • Дроздов Ю.Н.
  • Буяновский И.А.
  • Петрова И.М.
  • Игнатьева З.В.
RU2230238C1
КОМПОЗИЦИЯ ДЛЯ ФОРМИРОВАНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ КИНЕМАТИЧЕСКИХ ПАР 2004
  • Белик Борис Михайлович
RU2271485C1
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ПОДШИПНИКОВ КАЧЕНИЯ 2009
  • Образцов Лев Николаевич
  • Еременко Николай Кондратьевич
  • Блюменштейн Валерий Юрьевич
  • Образцова Ираида Ивановна
RU2457239C2
СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Першин Владимир Федорович
  • Ткачев Алексей Григорьевич
  • Воробьев Александр Михайлович
  • Зеленин Андрей Дмитриевич
  • Мележик Александр Васильевич
RU2648424C2
Порошкообразный состав для комплексной химико-термической обработки изделий из высоколегированных сталей и твердых сплавов 1982
  • Тарасов Анатолий Николаевич
  • Белоусов Михаил Савельевич
  • Кузнецова Раиса Ивановна
  • Теслер Аркадий Дмитриевич
  • Гаршина Лариса Елисеевна
SU1070207A1

RU 2 760 987 C1

Авторы

Остриков Валерий Васильевич

Нагдаев Владимир Константинович

Вязинкин Виктор Сергеевич

Забродская Алла Владимировна

Жерновников Дмитрий Николаевич

Кошелев Александр Викторович

Вигдорович Михаил Владимирович

Даты

2021-12-02Публикация

2021-06-15Подача