Способ производства кислотоустойчивой трубопроводной стали высокой чистоты Российский патент 2022 года по МПК C21C5/28 C21C7/00 

Описание патента на изобретение RU2765475C1

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области технологии металлургии, в частности, к способу плавки кислотоустойчивой трубопроводной стали высокой чистоты.

УРОВЕНЬ ТЕХНИКИ

Сера оказывает неблагоприятное воздействие на рабочие характеристики стали. Высокое содержание серы в стали будет ухудшать обрабатываемость стали в горячем состоянии, а именно, вызывая «горячеломкость» стали. С развитием науки и техники, общество имеет все более высокие требования к материалам стали. В частности, с учетом разработки HIC и H2S коррозионностойкой стали, требуется, чтобы содержание серы в стали было в пределах 0,0015%. Сталкиваясь с жесткими требованиями в отношении содержания серы, традиционный способ плавки с десульфуризацией больше не может полностью удовлетворять потребностям крупномасштабного производства. В частности, некоторые типы стали требуют низкого содержания серы, и для обеспечения рабочих характеристик выпуска и пайки, содержание углерода необходимо контролировать, чтобы оно находилось в пределах низкого диапазона. Вследствие постоянного равновесия углерод-кислород в конвертере, глубокий углерод конвертера приведет к высокому содержанию кислорода в расплавленной стали, что будет оказывать серьезное воздействие на футеровку конвертера, последующую глубокую десульфуризацию и чистоту расплавленной стали. Таким образом, разработка способа плавки кислотоустойчивой трубопроводной стали стала ограничивающим фактором для разработки стали с повышенной добавленной стоимостью и точек роста прибыли.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Для решения указанных выше технических проблем, в настоящем изобретении представлен способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, включающий:

процесс плавки в конвертере

предварительное нагревание железа: расплавленное железо, попадающее в печь, предварительно нагревают для десульфуризации и удаления шлака, при этом требуется S≤0.002%;

блокировка шлака: контролируют количество шлака, чтобы оно было ≤ 2 кг/т в ходе выпуска;

контроль температуры и содержания углерода: температура в конце дутья составляет выше 1680°C, а содержание C в конце составляет ≥ 0.040%;

выпуск и шлакование: известь и предварительно расплавленный рафинировочный шлак добавляют в ходе выпуска для верхнего шлака ковша, предварительно расплавленный рафинировочный шлак добавляют со скоростью 3 кг/тонну стали, а известь добавляют со скоростью 5 кг/тонну стали;

удержание кислорода в ходе выпуска: в ходе выпуска добавляют только сплав металлического марганца, а алюминий используют для слабой дезоксидации в процессе, алюминиевый блок добавляют в соответствии с содержанием кислорода в конце дутья в конвертере, а именно, значением TSO в измерительной фурме, а после добавления алюминиевого блока, содержание кислорода в расплавленной стали контролируют, чтобы оно было от 450 частей на миллион до 550 частей на миллион;

контроль дутья аргона в днище ковша: поток нижнего газа дутья в ходе выпуска составляет 800 нл/мин, а время выпуска контролируют, чтобы оно было от 5 мин до 8 мин;

процесс плавки в рафинировочной ковшовой печи

обработка обезуглероживанием в циркуляционном вакууме: после достижения расплавленной сталью станции обработки в циркуляционной печи, измеряют температуру и берут образцы для определения кислорода, выполняют вакуумное обезуглероживание, когда температура составляет выше 1580°C, добавляют частицы алюминия со скоростью 1,5 кг/тонну расплавленной стали после завершения реакции между углеродом и кислородом для глубокой дезоксидации, поддерживают вакуум в течение 3 минут и добавляют феррокремний и сплав металлического марганца для сплавления в соответствии с требованиями к компоненту стали;

обработка дегазацией в циркуляционном вакууме: выполняют обработку дегазацией в вакууме после циркуляционного сплавления при степени вакуумирования ≤85 Па, поддерживают в течение более чем 20 мин в ходе всего процесса циркуляции, контролируют поток дутья аргона к днищу ковша на уровне от 5 нл/мин до 10 нл/мин, и поднимают расплавленную сталь в ковшовую печь для продолжения рафинировочной обработки после завершения работы в вакууме;

предварительное управление ковшовой печью: после достижения расплавленной сталью станции обработки, регулируют скорость потока дутья к днищу ковша на уровне от 300 нл/мин до 400 нл/мин, добавляют известь со скоростью 2 кг/тонну стали и алюминиевую проволоку со скоростью 0,2 кг/тонну стали после шлакования в течение от 2 мин до 3 мин, отбирают образцы и анализируют, опускают электрод и нагревают;

промежуточный контроль процесса в ковшовой печи: в соответствии с компонентами первого образца стали и состоянием шлака, а также вязкостью ковшовой печи, добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 3 кг/тонну стали, а количество добавляемой алюминиевой проволоки составляет 0,2 кг/тонну стали; поток аргона в ходе десульфуризации контролируют так, чтобы он был от 200 нл/мин до 300 нл/мин, подают алюминиевую проволоку для регулирования содержания алюминия в расплавленной стали, подают алюминиевую проволоку для контроля потока аргона, чтобы он был от 30 нл/мин до 50 нл/мин, выполняют сплавление в соответствии с целевыми компонентами стали, нагревают в течение от 6 мин до 8 мин, отбирают образцы и анализируют, опускают электрод и продолжают нагревать для десульфуризации;

поздний контроль процесса в ковшовой печи: в соответствии с компонентами второго образца стали и вязкостью шлака в ковшовой печи, добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 1 кг/тонну стали, а количество добавляемой алюминиевой проволоки составляет 0,3 кг/тонну стали; когда цвет шлака становится белым, а именно, FeO+MnO≤1,0%, расплавленную сталь нагревают до температуры 1600-1610°C, поднимают электрод, накрывают кожух рафинировочной печи, регулируют дутье аргона к днищу ковша до 800 нл/мин, выполняют перемешивание аргона для глубокой десульфуризации в течение от 4 мин до 5 мин, отбирают образцы и анализируют, а также выполняют промежуточный контроль процесса в ковшовой печи в соответствии с результатом анализа; и

кальциевая обработка, а именно, плавное перемешивание: после приведения компонентов и температуры расплавленной стали в соответствие условиям, подают расплавленную сталь с проволокой и чистого кальция со скоростью 1,6 м/тонну стали; после завершения кальциевой обработки, выполняют плавное перемешивание в течение более чем 8 мин и контролируют скорость нижнего потока дутья при плавном перемешивании на уровне от 20 нл/мин до 30 нл/мин.

Технические результаты: Настоящее изобретение относится к способу плавки кислотоустойчивой трубопроводной стали с контролем содержания углерода в конвертере, содержания кислорода, содержания углерода при циркуляционном вакуумировании и содержания серы в рафинировочной ковшовой печи. Благодаря предварительной обработке с десульфуризацией и вдуванием порошка расплавленного железа, оптимизации системы дезоксидации выпуска конвертера, сплавлению с циркуляционным глубоким обезуглероживанием, дегазации, системе дезоксидации рафинировочной ковшовой печи и оптимизации системы шлакования, выполняют полную глубокую десульфуризацию, что снижает время нагревания и обеспечивает повышение электродного угля.

Техническое решение в настоящем изобретении дополнительно ограничивается следующим образом:

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором предварительно расплавленный рафинировочный шлак в ходе выпуска и шлакования содержит: CaO: 45,0%-55,0%, Al2О3: 27,0%-35,0%, SiO2: ≤6,0%, MgO: ≤8,0%, Fe2O3: ≤1,5% и H2O: ≤0,5%.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в процессе удержания кислорода в ходе выпуска сплав металлического марганца является следующим: 0,04%≤Mn≤0,60%.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в процессе удержания кислорода в ходе выпуска, когда TSO содержание кислорода составляет менее чем 550 частей на миллион, алюминиевый блок не добавляют; на момент, когда 550 частей на миллион≤TSO содержание кислорода<650 частей на миллион, добавляют алюминиевый блок 30 кг; на момент, когда 650 частей на миллион≤TSO содержание кислорода <750 частей на миллион, добавляют алюминиевый блок 60 кг; на момент, когда 750 частей на миллион≤TSO содержание кислорода <850 частей на миллион, добавляют алюминиевый блок 90 кг; и на момент, когда TSO содержание кислорода>850 частей на миллион, добавляют алюминиевый блок 120 кг.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в процессе удержания кислорода в ходе выпуска время добавления алюминиевого блока является следующим: начало выпуска → добавление шлакообразующего материала в течение 30 секунд → добавление алюминиевого блока после выпуска до 1/3 → сплав марганца → конец выпуска.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в ходе обработки обезуглероживанием в циркуляционном вакууме, когда температура составляет ≤1580°C, ковшовая печь должна быть нагрета до 1620°C или выше перед возвратом к циркуляционной обработке.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в ходе обработки обезуглероживанием в циркуляционном вакууме, по мере того, как степень циркуляционного вакуумирования начинает снижаться с нормального атмосферного давления, начинается обезуглероживание расплавленной стали, а когда вакуум снизился до порядка 500 Па, реакция углерод-кислород завершается, при этом время составляет от 6 мин до 9 мин.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в процессе удержания кислорода в ходе выпуска количество феррокремния и металлического марганца добавляют в соответствии с нижним пределом компонентов стали.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в ходе промежуточного контроля процесса в ковшовой печи время обработки первого образца стали составляет 10 минут; а в ходе позднего контроля процесса в ковшовой печи время обработки второго образца стали составляет 25 минут.

Указанный выше способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, в котором в ходе промежуточного контроля процесса в ковшовой печи скорость подачи алюминиевой проволоки контролируют для поддержания содержания алюминия от 0,035% до 0,045% в ходе плавки.

Полезными эффектами настоящего изобретения являются следующие:

(1) Конвертерный выпуск, в соответствии с настоящим изобретением, имеет стабильное удержание кислорода, а углерод в циркуляции снижен до менее чем 0,020% за счет реакции углерод-кислород;

(2) Настоящее изобретение обладает очевидным эффектом шлакования и десульфуризации в ковшовой печи при хорошем качестве литейных заготовок и хорошем контроле включений стального листа, а также может гарантировать производство кислотоустойчивой трубопроводной стали с повышенной добавленной стоимостью;

(3) Настоящее изобретение успешно решает несоответствие высококислородного выпуска, вызываемое глубоким обезуглероживанием в конвертере в ходе получения кислотоустойчивой трубопроводной стали (0,025%≤C≤0,050%, S≤0,0015%). В нем используется предварительная обработка расплавленного железа, а также десульфуризация с вдуванием порошка и удаление шлака. Высокоуглеродистый выпуск достигается в ходе обработки в конвертере. Для удержания кислорода выполняют слабую дезоксидацию. Выполняют циркуляционное глубокое обезуглероживание и дегазацию. Выполняют быстрое образование белого шлака в ковше и десульфуризацию. В комбинации с рациональным контролем нижним дутьем аргона в ходе процесса плавки в ковшовой печи и работой погруженной дуги, полностью используется металлургическая термодинамика и кинетические условия десульфуризации, а также предотвращается повышение углерода в электроде;

(4) Содержание углерода и серы в расплавленной стали в производственном процессе, согласно настоящему изобретению, является устойчивым, что снижает коррозию от высокой оксидации конвертера в ходе глубокой дезоксидации футеровки печи, а также уменьшает включения в расплавленной стали. Литейные заготовки имеют хорошее качество. Количество включений в диапазоне 1,5 контролируют на уровне 99%, что полностью удовлетворяет производственным требованиям в отношении первоклассной кислотоустойчивой трубопроводной стали и гарантирует эффективность производства плавкой, а также количество непрерывных литейных разливочных печей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 представляет собой схему способа, в соответствии с настоящим изобретением.

ПОДРОБНОЕ ОПИСАНИЕ

В настоящем варианте реализации представлен способ плавки кислотоустойчивой трубопроводной стали высокой чистоты, включающий:

процесс плавки в конвертере

предварительное нагревание железа: расплавленное железо, попадающее в печь, предварительно нагревают для десульфуризации и удаления шлака, при этом требуется S≤0.002%;

блокировка шлака: контролируют количество шлака, чтобы оно было ≤ 2 кг/т в ходе выпуска;

контроль температуры и содержания углерода: температура в конце дутья составляет выше 1680°C, а содержание C в конце составляет ≥ 0.040%;

выпуск и шлакование: известь и предварительно расплавленный рафинировочный шлак добавляют в ходе выпуска для верхнего шлака ковша, предварительно расплавленный рафинировочный шлак добавляют со скоростью 3 кг/тонну стали, а известь добавляют со скоростью 5 кг/тонну стали;

удержание кислорода в ходе выпуска: в ходе выпуска добавляют только сплав металлического марганца, а алюминий используют для слабой дезоксидации в процессе, алюминиевый блок добавляют в соответствии с содержанием кислорода в конце дутья в конвертере, а именно, значением TSO в измерительной фурме, а после добавления алюминиевого блока, содержание кислорода в расплавленной стали контролируют, чтобы оно было от 450 частей на миллион до 550 частей на миллион;

контроль дутья аргона в днище ковша: поток нижнего дутья в ходе выпуска составляет 800 нл/мин, а время выпуска контролируют, чтобы оно было от 5 мин до 8 мин;

процесс плавки в рафинировочной ковшовой печи

обработка обезуглероживанием в циркуляционном вакууме: после достижения расплавленной сталью станции обработки в циркуляционной печи, измеряют температуру и берут образцы для определения кислорода, выполняют вакуумное обезуглероживание, когда температура составляет выше 1580°C, добавляют частицы алюминия со скоростью 1,5 кг/тонну расплавленной стали после завершения реакции между углеродом и кислородом для глубокой дезоксидации, поддерживают вакуум в течение 3 минут и добавляют феррокремний и сплав металлического марганца для сплавления в соответствии с требованиями к компоненту стали;

обработка дегазацией в циркуляционном вакууме: выполняют обработку дегазацией в вакууме после циркуляционного сплавления при степени вакуумирования ≤85 Па, поддерживают в течение более чем 20 мин в ходе всего процесса циркуляции, контролируют поток дутья аргона к днищу ковша на уровне от 5 нл/мин до 10 нл/мин, и поднимают расплавленную сталь в ковшовую печь для продолжения рафинировочной обработки после завершения работы в вакууме;

предварительное управление ковшовой печью: после достижения расплавленной сталью станции обработки, регулируют скорость потока дутья к днищу ковша на уровне от 300 нл/мин до 400 нл/мин, добавляют известь со скоростью 2 кг/тонну стали и алюминиевую проволоку со скоростью 0,2 кг/тонну стали после шлакования в течение от 2 мин до 3 мин, отбирают образцы и анализируют, опускают электрод и нагревают;

промежуточный контроль процесса в ковшовой печи: в соответствии с компонентами первого образца стали и состоянием шлака, а также вязкостью ковшовой печи, добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 3 кг/тонну стали, а количество добавляемой алюминиевой проволоки составляет 0,2 кг/тонну стали; поток аргона в ходе десульфуризации контролируют так, чтобы он был от 200 нл/мин до 300 нл/мин, подают алюминиевую проволоку для регулирования содержания алюминия в расплавленной стали, подают алюминиевую проволоку для контроля потока аргона, чтобы он был от 30 нл/мин до 50 нл/мин, выполняют сплавление в соответствии с целевыми компонентами стали, нагревают в течение от 6 мин до 8 мин, отбирают образцы и анализируют, опускают электрод и продолжают нагревать для десульфуризации;

поздний контроль процесса в ковшовой печи: в соответствии с компонентами второго образца стали и вязкостью шлака в ковшовой печи, добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 1 кг/тонну стали, а количество добавляемой алюминиевой проволоки составляет 0,3 кг/тонну стали; когда цвет шлака становится белым, а именно, FeO+MnO≤1,0%, расплавленную сталь нагревают до температуры 1600-1610°C, поднимают электрод, накрывают кожух рафинировочной печи, регулируют дутье аргона к днищу ковша до 800 нл/мин, выполняют перемешивание аргона для глубокой десульфуризации в течение от 4 мин до 5 мин, отбирают образцы и анализируют, а также выполняют промежуточный контроль процесса в ковшовой печи в соответствии с результатом анализа; и

кальциевая обработка, а именно, плавное перемешивание: после приведения компонентов и температуры расплавленной стали в соответствие условиям, подают расплавленную сталь с проволокой и чистого кальция со скоростью 1,6 м/тонну стали; после завершения кальциевой обработки, выполняют плавное перемешивание в течение более чем 8 мин и контролируют скорость нижнего потока дутья при плавном перемешивании на уровне от 20 нл/мин до 30 нл/мин.

Взяв кислотоустойчивую трубопроводную сталь X70MS в качестве примера, ее плавили в 150-тонном конвертере и 150-тонной ковшовой печи. Химические компоненты трубопроводной стали X70MS представлены в Таблице 1. Весь процесс плавки контролируют следующим образом:

Таблица 1. Основные химические компоненты X70MS (%)

Компонент С Mn Si P S Alt Внутренний контроль 0,020-0,032 1,60-1,70 0,20-0,30 ≤0,010 ≤0,0010 0,02-0,050 целевые значения 0,027 1,25 0,25 ≤0,008 ≤0,0008 0,040

Таблица 2. Компоненты в конце конвертера (%)

Номер печи Температура O С P Сера 01 1671°C 0,0637% 0,043% 0,0069% 0,0076% 02 1 688°C 0,0519% 0,056% 0,0077% 0,0090%

Таблица 3. Компоненты после печи

Номер печи Рафинировочный шлак Известь Алюминиевый блок С P Сера 01 0,045% 0,0081% 0,0071% 02 0,060% 0,0083% 0,0084%

Таблица 4. Температура при поступлении в ходе циркуляции и состояние сплавления

Номер печи Температура (°C) Содержание кислорода (%) Mn, кг Алюминиевая пеллета, кг Феррокремний, кг Степень вакуумирования, Па 01 1593 0,0517 1414 235 214 76 2 1606 0,0498 1396 227 207 73

Таблица 5. Компоненты в конце циркуляции (%)

Номер печи С Mn P S Si Alt 01 0,0066 0,91 0,0086 0,00066 0,15 0,034 02 0,0059 0,86 0,0085 0,00081 0,13 0,031

Таблица 6. Основные компоненты расплавленной стали в конце рафинировочной печи (%)

Номер печи С Mn P S Si Alt Ca 01 0,026 1,64 0,0088 0,00048 0,24 0,039 0,0029 02 0,028 1,66 0,0091 0,00041 0,23 0,044 0,0026

Таблица 7. Окончательные компоненты шлака в рафинировочной печи (%)

Номер печи TFe SiO2 CaO MgO Al2O3 S MnO К Цвет шлака 01 0,37 9,34 58,68 5,48 28,62 0,46 0,08 6,28 Белый 02 0,45 9,13 58,86 5,53 28,93 0,47 0,14 6,45 Белый

В отношении прокатки стальных листов 21,5 мм делается ссылка на GBT 10516-2005 Steel-Determination of Content of Nonmetallic Inclusions, а включения в диапазоне 1,5 добавляют до 100%. Конкретные оценки являются следующими:

Номер образца Тип-A сульфидная серия, тонкая Тип-A сульфидная серия, грубая Тип-В алюминиевая серия, тонкая Тип-В алюминиевая серия, грубая Тип-С силикатная серия, тонкая Тип-С силикатная серия, грубая Тип-D серия со сферическим оксидом, тонкая Тип-D серия со сферическим оксидом, грубая Тип-DS сферический класс с одной частицей 1 0,5 0 0 0 0 0 0,5 0,5 0 2 0 0 0,5 0 0 0 0 0,5 0 3 0 0 0,5 0 0 0 0,5 0,5 0 4 0 0 0 0 0 0 0,5 0,5 0 5 0 0 0,5 1 0 0 0,5 0,5 0 6 0 0 0 0 0 0 0,5 0,5 0 7 0 0 0 0 0 0 0 0,5 0 8 0 0 0 0,5 0 0 0 0,5 0 9 0 0 0 0 0 0 0,5 0,5 0

Резюмируя, способ, согласно настоящему изобретению, включает следующие этапы, на которых: инвертируют расплавленное железо, предварительно нагревают расплавленное железо, удерживают кислород в конвертере в состоянии высокого содержания углерода и низкого содержания кислорода, выполняют обезуглероживание в печи с циркуляционным вакуумом, сплавление в циркуляционной печи и вакуумную дегазацию, предотвращение повышения содержания углерода и процесс быстрой десульфуризации в рафинировочной ковшовой печи и CCM процесса. Благодаря десульфуризации и шлакованию расплавленного железа, оптимизации системы удержания кислорода и системы шлакования в ходе выпуска в конвертере, процесса обезуглероживания и сплавления в печи с циркуляционным вакуумированием, шлакованию диффузной дезоксидацией в ковшовой печи и дезоксидации осадка, а также рациональному контролю дутья аргона к днищу ковша в ходе процесса плавки, обеспечивается полное использование контроля содержания углерода, а также металлургической термодинамики и кинетических условий для десульфуризации. Благодаря процессу быстрой сульфуризации с защитой от науглероживания, эффект десульфуризации шлакования в ковшовой печи является очевидным, достигается технология с 0,020%≤C≤0,050% и S≤0,0015% в расплавленной стали, расплавленная сталь имеет высокую степень чистоты, а литейные заготовки имеют хорошее качество. Содержание включений в стальном листе в диапазоне 1,5 контролируют, чтобы оно было выше 99%.

Помимо описанных выше вариантов реализации настоящее изобретение может включать в себя другие варианты реализации. Любое техническое решение, образованное путем эквивалентной замены или эквивалентного преобразования, подпадает под объем защиты настоящего изобретения.

Похожие патенты RU2765475C1

название год авторы номер документа
Способ производства коррозионно-стойкой стали 2023
  • Иванова Татьяна Николаевна
  • Захаров Олег Владимирович
RU2810410C1
СПОСОБ ПЛАВКИ СВЕРХНИЗКОУГЛЕРОДИСТОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ МАРКИ 13CR 2018
  • Сюй Инте
  • Чэнь Чжаопин
  • Ян Баоцюань
  • Ян Гуанвэй
RU2764914C2
СПОСОБ ВЫПЛАВКИ НЕРЖАВЕЮЩЕЙ СТАЛИ ДУПЛЕКС-ПРОЦЕССОМ 2003
  • Воробьев Николай Иванович
  • Лившиц Дмитрий Арнольдович
  • Звонарев Владимир Петрович
  • Палкин Сергей Павлович
  • Макаревич Александр Николаевич
  • Братко Геннадий Александрович
  • Щербаков Евгений Иванович
  • Левада Антон Григорьевич
  • Горбатов Александр Викторович
RU2268310C2
СТОЙКАЯ К КИСЛОТАМ И КОРРОЗИИ СТАЛЬ ДЛЯ ТРУБОПРОВОДА СО СТЕНКОЙ БОЛЬШОЙ ТОЛЩИНЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2018
  • Чжай Дунъюй
  • У Цзюньпин
  • Фан Лэй
  • Цзян Цзиньсин
  • Ду Хайцзюнь
  • Юнь Цянпэн
  • Инь Цзе
RU2765963C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОУГЛЕРОДИСТОЙ СТАЛИ С СОДЕРЖАНИЕМ СЕРЫ [S] ≤ 0,0015% В АГРЕГАТЕ ПЕЧЬ-КОВШ ДЛЯ РАФИНИРОВАНИЯ 2018
  • Цао Юйлян
  • Чжу Нин
  • Чжоу Хэхэ
  • У Гопин
  • Не Чжэньлай
RU2750303C1
СПОСОБ ДЕСУЛЬФУРАЦИИ СТАЛИ 2012
  • Панда, Дирен
  • Росс, Нил
  • Макквиллис, Гари
  • Дженкинс, Джером
RU2608865C2
СПОСОБ РАФИНИРОВАНИЯ РАСПЛАВЛЕННОЙ СТАЛИ ВАКУУМНЫМ ОБЕЗУГЛЕРОЖИВАНИЕМ 2021
  • Мидзобата, Кэйсукэ
  • Харада Акифуми
  • Накаи
  • Ямада, Реи
RU2802218C1
НИЗКОЗАТРАТНОЕ ПОЛУЧЕНИЕ НИЗКОУГЛЕРОДИСТОЙ, НИЗКОСЕРНИСТОЙ И НИЗКОАЗОТИСТОЙ СТАЛИ С ПРИМЕНЕНИЕМ ОБЫЧНОГО СТАЛЕПЛАВИЛЬНОГО ОБОРУДОВАНИЯ 2011
  • Макквиллис, Гари
  • Дженкинс, Джером
  • Росс, Нил
  • Панда, Дирен
  • Сосински, Дэвид Дж.
RU2576357C2
Способ выплавки ниобийсодержащей нержавеющей стали 1980
  • Бородин Дмитрий Иванович
  • Быстров Сергей Иванович
  • Шурыгин Гурий Дмитриевич
  • Губин Алексей Васильевич
  • Петров Борис Степанович
  • Тюрин Евгений Илларионович
  • Бушмелев Владимир Матвеевич
  • Сивков Сергей Сергеевич
  • Ширяев Вадим Петрович
  • Минченко Владимир Андреевич
  • Мирошниченко Владислав Иванович
  • Костюк Анатолий Дмитриевич
SU945184A1
СПОСОБ ВЫПЛАВКИ ХРОМИСТЫХ И ХРОМОНИКЕЛЕВЫХ СТАЛЕЙ 1990
  • Мурадян О.С.
  • Шарафутдинов В.Л.
  • Валеева Р.Г.
  • Иванов С.Н.
  • Роженцев В.В.
  • Маслюков Н.И.
RU2012597C1

Иллюстрации к изобретению RU 2 765 475 C1

Реферат патента 2022 года Способ производства кислотоустойчивой трубопроводной стали высокой чистоты

Изобретение относится к металлургии и может быть использовано при производстве кислотоустойчивой трубопроводной стали высокой чистоты. Предварительно нагревают расплавленное железо, удерживают кислород в конвертере в состоянии высокого содержания углерода и низкого содержания кислорода, выполняют обезуглероживание в циркуляционном вакууматоре, сплавление в циркуляционном вакууматоре и вакуумную дегазацию, предотвращают повышение содержания углерода и осуществляют процесс быстрой десульфуризации и шлакования расплавленного железа в рафинировочной ковшовой печи. Обеспечивают контроль содержания углерода в расплавленном железе за счет оптимизации систем удержания кислорода и шлакования в ходе выпуска в конвертере, процесса обезуглероживания и сплавления в печи с циркуляционным вакуумированием, процесса шлакования диффузной дезоксидацией в ковшовой печи, а также рациональному контролю дутья аргона к днищу ковша в ходе процесса плавки. Изобретение позволяет производить сталь с высокой степенью чистоты и высокого качества литейные заготовки, при этом содержание включений в стальном листе в диапазоне 1,5 контролируют, чтобы оно было выше 99%. 8 з.п. ф-лы, 1 ил., 8 табл.

Формула изобретения RU 2 765 475 C1

1. Способ производства кислотоустойчивой трубопроводной стали высокой чистоты, при котором:

плавят ее в конвертере:

предварительно нагревают железо: расплавленное железо, попадающее в печь, предварительно нагревают для десульфуризации и удаления шлака, при этом требуется S≤0,002 мас.%;

блокируют шлак: контролируют количество шлака, чтобы оно было ≤ 2 кг/т в ходе выпуска;

осуществляют контроль температуры и содержания углерода: температура в конце дутья составляет выше 1680°C, а содержание C в конце составляет ≥ 0,040 мас.%;

производят выпуск и шлакование: известь и предварительно расплавленный рафинировочный шлак добавляют в ходе выпуска для верхнего шлака ковша, предварительно расплавленный рафинировочный шлак добавляют со скоростью 3 кг/т стали, а известь добавляют со скоростью 5 кг/т стали;

удерживают кислород в ходе выпуска: в ходе выпуска добавляют только сплав металлического марганца, а алюминий используют для слабой дезоксидации в процессе, алюминиевый блок добавляют в соответствии с содержанием кислорода в конце дутья в конвертере, а именно, значением TSO в измерительной фурме, а после добавления алюминиевого блока, содержание кислорода в расплавленной стали контролируют, чтобы оно было от 450 частей на миллион до 550 частей на миллион;

осуществляют контроль нижнего дутья аргоном в ходе выпуска: скорость потока нижнего дутья в ходе выпуска составляет 800 нл/мин, а время выпуска контролируют, чтобы оно было от 5 мин до 8 мин;

производят процесс плавки в рафинировочной ковшовой печи:

осуществляют обработку обезуглероживанием в циркуляционном вакууматуре: после достижения расплавленной сталью станции обработки в циркуляционной печи, измеряют температуру и берут образцы для определения кислорода, выполняют вакуумное обезуглероживание, когда температура составляет выше 1580°С, добавляют частицы алюминия со скоростью 1,5 кг/т расплавленной стали после завершения реакции между углеродом и кислородом для глубокой дезоксидации, поддерживают вакуум в течение 3 мин и добавляют ферросилиций и сплав металлического марганца для сплавления в соответствии с требованиями к компонентам стали;

осуществляют обработку дегазацией в циркуляционном вакууматоре: выполняют обработку дегазацией в вакууме после циркуляционного сплавления при степени вакуумирования ≤85 Па, поддерживают в течение более чем 20 мин в ходе всего процесса циркуляции, контролируют поток дутья аргона к днищу ковша на уровне от 5 нл/мин до 10 нл/мин, и поднимают расплавленную сталь в ковшовую печь для продолжения рафинировочной обработки после завершения работы в вакууме;

осуществляют предварительное управление ковшовой печью: после достижения расплавленной сталью станции обработки регулируют скорость потока дутья к днищу ковша на уровне от 300 нл/мин до 400 нл/мин, добавляют известь со скоростью 2 кг/т стали и алюминиевую проволоку со скоростью 0,2 кг/т стали после шлакования в течение от 2 мин до 3 мин, отбирают образцы и анализируют, опускают электрод и нагревают;

осуществляют промежуточный контроль процесса в ковшовой печи: в соответствии с компонентами первого образца стали и состоянием шлака, а также вязкостью шлака в ковшовой печи, добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 3 кг/т стали, а количество добавляемой алюминиевой проволоки составляет 0,2 кг/т стали; поток аргона в ходе десульфуризации контролируют так, чтобы он был от 200 нл/мин до 300 нл/мин, подают алюминиевую проволоку для регулирования содержания алюминия в расплавленной стали, подают алюминиевую проволоку для контроля потока аргона, чтобы он был от 30 нл/мин до 50 нл/мин, выполняют сплавление в соответствии с целевыми значениями компонентов стали, нагревают в течение от 6 мин до 8 мин, отбирают образцы и анализируют, опускают электрод и продолжают нагревать для десульфуризации;

осуществляют поздний контроль процесса в ковшовой печи: в соответствии с компонентами второго образца стали и вязкостью шлака в ковшовой печи добавляют известь и алюминиевую проволоку для шлакования и десульфуризации, причем количество добавляемой извести составляет менее 1 кг/т стали, а количество добавляемой алюминиевой проволоки составляет 0,3 кг/т стали; когда цвет шлака становится белым, а именно, FeO+MnO≤1,0 мас.%, расплавленную сталь нагревают до температуры 1600-1610°С, поднимают электрод, накрывают кожух рафинировочной печи, регулируют дутье аргона к днищу ковша до 800 нл/мин, выполняют перемешивание аргоном для глубокой десульфуризации в течение от 4 мин до 5 мин, отбирают образцы и анализируют, а также выполняют промежуточный контроль процесса в ковшовой печи в соответствии с результатом анализа; и

производят кальциевую обработку, а именно, плавное перемешивание: после приведения компонентов и температуры расплавленной стали в соответствии с заданными условиями подают в расплавленную сталь проволоку из чистого кальция со скоростью 1,6 м/т стали; после завершения кальциевой обработки, выполняют плавное перемешивание в течение более чем 8 мин и контролируют скорость нижнего потока дутья при плавном перемешивании на уровне от 20 нл/мин до 30 нл/мин.

2. Способ по п. 1, отличающийся тем, что в ходе выпуска и шлакования предварительно расплавленный рафинировочный шлак содержит, мас.%: CaO 45,0-55,0 , Al2О3 27,0-35,0 , SiО2≤6,0, MgO≤8,0, Fe2O3≤1,5 и H2O≤0,5.

3. Способ по п. 1, отличающийся тем, что в процессе удержания кислорода в ходе выпуска, когда TSO содержание кислорода составляет менее чем 550 частей на миллион, алюминиевый блок не добавляют; на момент, когда 550 частей на миллион≤TSO содержание кислорода<650 частей на миллион, добавляют алюминиевый блок 30 кг; на момент, когда 650 частей на миллион≤TSO содержание кислорода <750 частей на миллион, добавляют алюминиевый блок 60 кг; на момент, когда 750 частей на миллион≤TSO содержание кислорода <850 частей на миллион, добавляют алюминиевый блок 90 кг; и на момент, когда TSO содержание кислорода>850 частей на миллион, добавляют алюминиевый блок 120 кг.

4. Способ по п. 1, отличающийся тем, что в процессе удержания кислорода в ходе выпуска время добавления алюминиевого блока является следующим:

инициируют начало выпуска;

производят добавление шлакообразующего материала в течение 30 с;

производят добавление алюминиевого блока после выпуска до 1/3 объема расплава стали;

инициируют сплав марганца;

констатируют конец выпуска.

5. Способ по п. 1, отличающийся тем, что в ходе обработки обезуглероживанием в циркуляционном вакууматоре, когда температура составляет ≤1580°С, ковшовую печь нагревают до 1620°С или выше перед возвратом к циркуляционной обработке.

6. Способ по п. 1, отличающийся тем, что в ходе обработки обезуглероживанием в циркуляционном вакууматоре, по мере того, как степень циркуляционного вакуумирования начинает снижаться с нормального атмосферного давления, начинается обезуглероживание расплавленной стали, а когда вакуум снизился до порядка 500 Па, реакция углерод-кислород завершается, при этом время составляет от 6 мин до 9 мин.

7. Способ по п. 1, отличающийся тем, что в процессе удержания кислорода в ходе выпуска количество феррокремния и металлического марганца добавляют в соответствии с нижним пределом компонентов стали.

8. Способ по п. 1, отличающийся тем, что в ходе промежуточного контроля процесса в ковшовой печи время обработки первого образца стали составляет 10 мин, а в ходе позднего контроля процесса в ковшовой печи время обработки второго образца стали составляет 25 мин.

9. Способ по п. 1, отличающийся тем, что в ходе промежуточного контроля процесса в ковшовой печи скорость подачи алюминиевой проволоки контролируют для поддержания содержания алюминия от 0,035 мас.% до 0,045 мас.% в ходе плавки.

Документы, цитированные в отчете о поиске Патент 2022 года RU2765475C1

CN 104232831 A, 24.12.2014
CN 104630418 A, 20.05.2015
JPH 0841526 A, 13.02.1996
СПОСОБ ПОЛУЧЕНИЯ СТАЛИ ДЛЯ СТАЛЬНЫХ ТРУБ С ОТЛИЧНОЙ СТОЙКОСТЬЮ В КИСЛОЙ СРЕДЕ 2008
  • Нумата Мицухиро
  • Такеути Синго
  • Омура Томохико
RU2433189C2
СПОСОБ ПРОИЗВОДСТВА ТРУБНОЙ СТАЛИ 1998
  • Кузнецов В.Ю.
  • Неклюдов И.В.
  • Чикалов С.Г.
  • Тазетдинов В.И.
  • Садыков В.В.
  • Сафронов А.А.
  • Тетюева Т.В.
  • Карпов Н.А.
  • Супонин А.Г.
  • Анищенко В.В.
RU2148659C1
СПОСОБ ПРОИЗВОДСТВА ТРУБНОЙ СТАЛИ 2014
  • Мишнев Петр Александрович
  • Никонов Сергей Викторович
  • Жиронкин Михаил Валерьевич
  • Краснов Алексей Владимирович
  • Петенков Илья Геннадьевич
  • Митрофанов Артем Викторович
  • Белуничева Екатерина Борисовна
RU2564373C1

RU 2 765 475 C1

Авторы

Цао Юйлян

Чжоу Хэхэ

У Гопин

Даты

2022-01-31Публикация

2019-06-28Подача